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This semiannual technical report covers research carried out by the
Advanced Teleprocessing Systems group at UCLA under ARPA Contract DAHC
15-73-C-0368 during the period January 1, 1977 to June 30, 1977. Advance-
ments have been made on all four contracted tasks; namely, ground radio
packet switching, satellite studies, resource sharing and security. In
the following paragraphs, we describe the progress and point to the list
of references which represent the published work resulting from this
supported research.

1. INTRODUCTION

Following this summary is a list of publications produced as a result
of the recent research on this contract covering the six months being
reported. This list contains only those articles and reports which, in
fact, did appear in print. Papers which have been submitted (of which
there are many) are not listed here, but will be listed in future reports
as they appear in the published literature. As usual, we devote the main
body of this report to the detailed presentation of one aspect of this over-
all research, and we simply mention the other areas briefly in this summary.

The research reported in the main body of this document discusses the
effect that packet-switching networks have on '"stream traffic'". An example
of stream traffic is packetized speech; other examples are real-time
traffic generated, for example, from real-time sources such as television
cameras, temperature-monitoring systems, etc. The characteristic of this
traffic is that it has a time constraint as well as a throughput constraint.
The time constraint is that the roundtrip delay must not exceed a threshold
before the usefulness of the data becomes lost; in addition, the timing be-
tween delivered packets must not be too large or the continuity of the
signal is lost. The throughput constraint comes about because the traffic
continues to be generated and requires a moderate (if not high) bandwidth
through the network. However, an advantage of stream traffic is that not
all of it must be delivered; in some sense, it is volatile and becomes stale.
This kind of traffic is very different from that which the ARPANET was
originaily designed to carry and, as one might expect, some unusual phenomena
occur when sent through a packet-switched network. The particular details
in the following report represent the Ph.D. dissertation of William E. Naylor
(chairman, Leonard Kleinrock) and the work is entitled "'Stream Traffic Com-
munication in Packet-Switched Networks." Whereas the effort was to study
stream traffic flow through a network, it turns out that a large effort was
devoted to studying the routing procedure (in particular, the periodic up-
dating procedure) in the ARPANET. It was found that this routing procedure




severely affected and degraded stream traffic performance and so a number
of suggestions were made and evaluated as regards the priority ordering
of updating. A loop-free algorithm for updating routing tables is also
presented and proven to be loop-free. Lastly, the tradeoff between gaps
in transmission and delay in reception of that transmission is studied.

A number of simulations and measurement experiments are reported which
confirm and support the analytical treatment given in this work. Further
details can be found in the abstract and dissertation reproduced in the
main body following the list of publications.

The first four references in the list of publications pertain to the
behavior and analysis of landbased computer networks. The first paper
describes some additional experimentation for the design of packet networks
and summarizes some of the successful design procedures which we have de-
veloped. The second paper on the analysis of buffer allocation schemes
describes various ways for sharing storage in a multiplexing node within a
computer network. The third paper summarizes a portion of a study of hier-
archical routing in large networks and shows the tradeoff between the length
of routing tables and the path length presented by those routes. The fourth
paper has to do with flow control and throughput in the ARPANET. It points
out some traps and degradations which may arise in networks, shows how to
correct them and then warns against the kinds of effects which produce dead-
locks. The fifth paper on packet switching in radio channels represents a
contribution to our work in ground radio packet switching. It presents a
new scheme known as mini-slotted alternating priority (MSAP) and presents
the performance profile for this system. Its particular usefulness is in
the heavy traffic case since it achieves a capacity of 1 and still provides
rather efficient communications delays. Further, it discusses the regions
in which various access schemes are optimal. Overall, the advancements in
ground radio packet switching has moved along extremely well. A number of
publications have been accepted and will be reported on in the next semiannual
technical report.

The main report on stream traffic in packet networks is given after
the following list of publications.
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ABSTRACT

N

“"This research deals with the transmission of streanm
traffic through packet switched networks. Stream traffic
communication is characterized by 1) a requirement of small
response time and moderate throughput, the fact that 2) tim-
ing is an integral part of the information and that 3) the
information 1is redundant and somewhat tolerahle to loss.
Remote voice communication provides an example of stream
traffic communication. Traditional dedicated communication
systems supporting stream traffic have exhibited fixed capa-
city and fixed delay. 1In such systems each user is assianed
a communication Link whose capacity is larce enouch to sup-
port that wuser's peak Lload. while timing 1is easily
rreserved by such systems, it is difficult to share communi-
cation Llinks. This research explores systems in which the
communication channels are shared among many users, thus

causing delay and capacity to vary..
T~

5 —

The first area of concentration is an examination of
some important factors which adversely affect delay in pack-
et switched networks. The ARPANET is used as an example of
such a network. Wwe focus on loop control in adaptive rout-
ing, priority assignment, and the effect of periodic wupdate
routing in large networks. Suggestions are offered for per-
formnance improvement in these areas. Analysis and simula-
tion are used to predict the magnitude of improvement. Py

modifying the ARPANET procedures in the manner suggested.




measurenent and simulation indicate that a 40% to 50% reduc-
tion in average delay may be achieved.

fven with 1improved performance a packet switched net-
work exhibits variable delay due in general to the possible
queueing of packets at channels in the network. With stream
traffic it is important to preserve the relative timina of
the information as closely as possible. This is zccom-
plished by smoothing the departure of information with
buffering. This 1is the second main area of concentration.
We propose buffering schemes which adapt tb changing network
delay and which trade output smoothness against buffering

delay. Th ormance of the buffering strategies is com-

pared by is and simulation.
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CHAPTER 1

INTRODUCTION

1.1 Recent history of packet switching

since the development of the ARPANET [Robe 701 in the

Late 1960s by the Advanced Research Projects Agency of the

B Py R Y TP

United States Department of Defense, there has been arn ever

increasing amount of activity in the area of packet switch-
ing research, development, and implementation. The ARPANET,
built primarily by Bolt, Beranek and Newman, Inc., Cam-

bridge, Massachusetts (BBN), is the most widely known exam-

ple of a packet switched network. Other networks are emerg-

ing as many agencies, countries and federations are current-

Ly funding research and/or building packet switched net-
works. Among these are WWMCCS [(Beno 71], NPL [Bart 701,

CYCLADES [Pouz 73], DATAPAC C[DPAC 741, COST11 [Barb 721, to

name a few. The first commercial packet switching service
is now in operation in the U. S. (operated by Telenet Com-
munications Corporation) [Math 75].

Extensions to the ARPANET form of packet switching have
taken place and have lLlead to experimental systems =-- ALOHA

CAbra 70J, PRNET C(kKahn 751, SATNET ([Klei 731, ETHERNET

CMetc 77]. Currently, the interconnection of such networks
[McKe 74a] and the standardization of protocols [Pouz 751,

CHove 76] are each of considerable dinterest in the data




| communications community. Also of interest are aspects of
l secure communications (Farb 75].
The saliept features of packet switching
Here we describe the important (so far as we are con-
cerned here) properties of a packet switched network. A

packet switched network (of the ARPANET form) incorporates

switching computers within the communjcatiors media. The
2 network consists of HOSTs (i.e., packet or message sources
== computers or terminals) and a subnet to which the HOSTs
are attached. The subnet contains switching nodes (called
IMPs in the ARPANET [Hear 70]) which are connected, with
some topology, by a set of communications Lines or channels.
HOSTs are connected to the network at switching nodes. A

source HOST sends a3 message (to a destination HOST) by

‘
4
|
:
E . delivering the message, with the address of the destination
E HOST, to 1its connected switching node. The switching node
% { then treaks the message into one or more packets. Each
i packet is then forwarded (if necessary) by the switching
[ node to one of its neighbors (i.e., another switching node
k which 1is directly connected to the forwardino node) the

choice of neighbors being governed by the routing procedure.

Each node, which encounters the packet, forwards it to a

neightor the choice of which is again based on tte routing

procedure. ‘
0ften there 1is some form of error detection and

recovery in the forwarding process in order to assure the

correct receipt of packets. In the ARPANET, for example.,

eSS - EE—— : e ‘
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there is a <checksum appended to the packet at the sender
which is checked by the receiver. Only when the ckecksum is
correct and buffer space 1is available does the receiver
return (sometimes "piggybacked" on reverse traffic) an ack-
nowledgement (ACK) to the sender. If a sent packet has not
received its ACK within a certain time (currently 128 mil-
Lliseconds), then the packet is retransmitted.

The forwarding process is repeated until the packet
arrives at a switching node which is connected to the desti-
nation HOST, at which point the packet is reassembled with
the other packets of the same message. When all its packets
have arrived the message is sent to the destination HOST.
In the ARPANET this final step creates an end-to-end ack-
nowledgement called 2 Ready-for-Next-Message (RFNM) which is
sent back to the sender.

At each forwarding step, often called a hop, alona the
way a packet incurs some processing delay which is required
to make the routing decision (i.e.» to which neightor to
route this packet). Also, it may encounter a cueue of pack-.
ets waiting to be sent to the neighbor and must therefore
wait wuntil all C(higher or equal priority) packets have been
served (i.e.» sent to the neighbor) before it may use the
channel. In particular, this may result in variable delay.
That is, a message sent from A to B at time t0 may experi-
ence a different delay than a similar message sent at time
t1. The maximum attainable throughput from A to P may vary

with time as well, since it will depend on the Level of
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interference from other communicating HOST pairs.

Packet switching promises greater efficiency of
resources by sharing those resources amona many users, each
of which uses only a small portion of the total capacity.
The savings, at least in part, are passed along to the user.
With the rapid growth of data communications we shall surely
see more and bigger packet switched networks emerge.

Pecause of its digital nature, today's packet switching
technology has been designed and used chiefly for data com-
munications (e.g., terminal-to-computer and computer-to-
computer). Other forms of communication (i.e., voice),
which have traditionally been accomplished by analog

methods, are now beginning to use digital technologyv.

1.2 yoice goes digital

The advent of 1inexpensiver highly reliable digital
transmission equipment has already led to the use of such
circuits in “"short-haul" voice communications [Jame 721].
Also some 4C million circuit miles of digital trunks were in
place by the end of 1975 (Falk 77). There seems Llittle
doubt that the use of digital transmission will increase as
time progresses. We are told by Gallager [Gall 77al that
the military will wuse an all digital telephone retwork in
the 1980°'s. Cost will be the most important reason for
conversion to digital transmission. Accordina to Falk
CFalk 77] "Bell Canada plans to save $40 million a year in

capital costs by wusing new digital equipment". Another




consideration is that a digital sianal 1is much easier to
encrypt than is an analog signal. This could lead to a far
more secure means of voice communication.

Simple digitization requires a data rate of tetween 5C
and 60 kilobits per second (kbps) to provide quality equal
to conventional telephone eguipment. This is extremely high
compared to current requirements in data communications.
fFortunately, speech is highly redundant and can therefore be

significantly compressed.

1.3 Speech compression research

There are two methods of compression currently under
study by the ARPA Network Speech Compression (NSC) group =
(a) continuous variable slope delta modulation (CVsSD)
CForag 741 and (b) linear predictive coding (LPC) [Atal 71].
Experimental studies of remote voice communication wusing
these two schemes have already taken place in the ARPANET.
The CVSD scheme transmits one bit per sample, whose value (1
or 0) depends on whether the lLast synthesized point is above
or below the current input. This scheme provides acceptable
quality in the 8 to 20 kbps region [Fora 74]. The experi-
ments in the ARPANET with this technique used a peak rate of
10 khps and experienced delays on the order of ¢ to 4
seconds between speaker and listeﬁer (over a 10 hop network
path), as reported by Cohen in [Nayl 74al. The LPC method
is based on a model of the vocal tract and assumes that a

speech sample may be approximated by a linear combination of




the previous n samples. The coefficients in the lLinear com-

bination are slowly varying quantities. This algorithm pro-
vides high quality speech in the range of 2.4 to 9.6 kbps
CAtal 71]. With refinements such 3as DELCO [Magi 731, one
can achieve average data rates of 1.2 to 4.8 ktps. A recent
experiment 1in the ARPANET had a peak data rate of 4.1 kbps
and an average of 1.4 kbps, with acceptable quality, wusing
the LPC compression scheme [McCa 75].

This research has created, in essence, a new form of
"data" communication, and provides the opportunity to apply
packet switching technology to tﬁe area of remote voice com-
munication. Human speech contains a great deal cf redundan-
cy and silence. During silence, with most dedicated or
switched circuit systems the channel remains unused. Packet
switching would allow this dead time to be wused by others
thus allowing greater channel efficiency which eventually

transtates to cost savings.

1.4 The characteristics of stream traffic

This dissertation investigates a set of problems relat-
ed to the use of packet switching technology for the purpose
of stream traffic communication. Remote voice communication
is an example of stream traffic communication. Let us de-
fine stream traffic. Stream traffic is characterized bty the
followina three properties:

1) small response time and moderate throughput are

required.,




2) timing is an integral part of the information, and
3) the information contains redundancy.

Property 1 allous for the possibility of real-time
1 interactive communication between two or more locations.
This property alone makes stream traffic distinguishable
from the two classical forms of data communication. Packet

switched networks have, in general, been designed to carry

traffic which has traditionally been classified into two

3 categories: (a) LD - low delay (interactive), and (b) HT -

high throuahput (file transfer). As noted by Cohen, Opder-

s

b

teck and kleinrock [Opde 74), stream traffic communication

b

| falls 1into yet another category (c) ST - stream traffice,

regquiring both low delay and moderate throughput.

T e TR

Not only are the transmission requirements of stream

! traffic unigque, but the information itself is of a somewhat
different nature than the usual data communication. Froper-

ty 2 indicates that each unit (bit, if you will) of informa-

tion has an associated (possibly implied) time stamp and

that the relative timing of the information should bLe

preserved as well as possible by the transmission media.

Although sequencina is important, in ordinary data communi-

cations there 1is no notion of timing associated with the

information. Unlike traditional data communicetion, the

information 1in stream traffic is somewhat redundant. This
means that the information is less vulnerable to loss within

the system than for traditional data communication. The

communication media may Llose a small fraction of the




information without seriously affecting the quality. This
is clearly distinct from, say, remote job entry in which a
very precise specification in the form of a proaram is the
object of communication, and therefore no loss at all can be
tolerated.

This characterization of stream traffic is intended to
fit two- (or more) way interactive voice communication.
There are other areas of communication which may possess
these properties as well. Distribution and local broadcast
of Live (or delayed and transmitted from the source in
real-time) radio or television programming would appear to
have the three properties. While there 1is no interaction
required of such one-way systems, (ow delay may be required
due to lack of buffer space at the receiver. Television in
particular requires extremely high throughput by ARPANET
standards. Therefore the capacity of a network designed to
caerry television must have a capacity so that the television
transmission consumes only a moderate portion of that capa-

city.

1.5 Statement of the problem
There are two main areas of emphasis which are explored
in this dissertation.
1) 1dentify and examine those design considerations (of
packet switched networks) which have a significant
impact on the performance of stream traffic communi-

cation in a packet switched environment.
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2) Given a (packet switched) network., examine some
sending and receiving policies which attempt to bal-
ance the preservation of the relative timing acainst

end-to-end delay.

Since the ARPANET is a convenient example of a packet
switched network, we examine it as a case study and attempt
to extract some general results about designing a packet
switched network aimed at the ST class, but still retaining
capabilities in the other classes. The emphasis here is to
reduce delay in order to satisfy property (1). Loop con-
trol, system priorities, and the effects of periodic routing

updates are among the issues of concern under area (1).

1.6

1
(E]

ummary of results

In Chagter 2 we investigate the occurrence of Loops
caused by routing update procedures. B8y routing we mean the
process by which packets are directed from switch to switch
through the network. This definition is intended to include
the structure and use of local routing information as well
as the updating of this local information. Routing algo-
rithms are troken into four classes in [Crow 751/ (a) "non-
adaptive” or fixed - where the route between any two nodes
remains fixed. (b) "Centralized adaptive”" - in which routes
are dynamically modified by a central overseer. (c) "Iso-

Lated adaptive"” - where routes are changed dynamically by

each node without sharing information among the nodes. (d)
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“Distributed adaptive” - in which routes are dynamically
changed by each node with information shared amona the nodes
in the form of routing update packets. It should be <clear
that Lloops would be forbidden 1in types (2) and (b) by a
small amount of care. It would appear to be impossible to
prevent Lloops in type (c). We therefore concentrate our
efforts in studying the distributed adaptive type algorithm.
The existence of routing loops under a routing procedure is
a possible source of performance degradation. Packets which
are trapped 1in Lloops have increased network delay. If a
Loop persists sufficiently long, then interaction is ham-
pered if not destroyed (i.e., property (1) is violated). 1In
CNayl 751 a loop-free routing algorithm 1is presented. It
was shown that this algorithm cannot create loops, but its
operational characteristics required further examination.
We investigate the operational characteristics of this and
other alaorithms through the use of simulation. A Llocal
Loop-free (or ping-pong-free) algorithm is found to perform
best amona those algorithms tested.

In Chapter 3 we consider priority assignment among
tasks within the system. An important issue in thke perfor-
mance of a network is the assignment of the priority amonq
the various functions within a node as well as the priori-
ties assigned to the transmission of packets on the chan-
nels. As an example, we have found that under the current
ARPANET strategyr, packets waited as long, on the average.,

for the processor as for the transmission channels. This is

10




due to the fact that routing update packets and non-routing
packets (i.e., data and control distinct from routina update
packets) are processed in first-come-first-served (FCFS)
order within the nodes. In addition some of the nodes in
the network spend more than S0X of their total capacity just
processing routing updates, compared to "only" 1% routing
overhead on the channels. Examination of this problem iso-
Lated to a single node suggests that since, in tke current
ARPANET, routing packets require approximately 4C times the
processina time that non-routing packets require, the pro-
cessing of routing packets should be done at a Lower priori-
ty. Simulation of the system as a whole, suggests that the
Llocal optimum Lleads to a global optimum in terms of mean
delay and network throughput. Therefore, by modifying the
priority structure one could reduce delay and thereby assist
in complying with nroperty (1).

In Chapter &4 we show some interesting delay behavior
for a periodic stream traffic source. The behavior is due
to the periodic nature of the routinyg update procedure. The
current ARPANET scheme provides for periodic updates, and
with the growing size of the network the rate of routina
updates has been increased to allow for better propagetion
of information through the network when congesticn or
failure occurs. We show that one must pay a high price, in
terms of delay, for this feature durina normal operation
however. Under normal conditions routing wupdates are not

required very often since most routes need not change much.
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Long term data on ARPANET reliability shows that network
component failures occur very infrequently compared to the
routing update period. These results suggest an asynchro;
nous method of updating routing tables. This would result

in lower average delay and thus help provide property (1).

Under the second area of emphasis we concentrate on
methods which attempt to preserve the relative timing of the
information without destroying property (1). In Chapter S
we examine buffering strategies, at source and destination.,
which attempt to minimize gaps in the output stream and at
the same time attempt to minimize the delay between speaker
and Llistener. We found that delay varies quite rapidly and
therefore delay prediction could not be used to adjust to
the network dynamics on a message by message basis; rather
we found that the sending strategy should rema2in fixed for
"“lona" periods.

dore extensive results are found to predict the perfor-
mance of destination buffering schemes. Wwe define some
delay prediction techniques and two playout methods. Sased
on some assumptions on system delay we have developed models
of the system behavior in terms of delay and gap probabili-
ty. The solution of the models requires the knowledge of
the system delay distribution. Fxact results are obtained
for the exponential distribution and shifted exponential
distribution. Numerical integration 1is wused to obtain

results for an Erlang family of distributions which previous

12




models [Klei 64] tell us is a somewhat better model of net-
work delay. Finally by simulation we compare the perfor-
mance of our delay variation estimation technique to a delay
tracker method which has been used experimentally in the
ARPANET, and to a planned revision of that scheme.

Chapter 6 Llists our conclusions and suggests some areas

of interest for further research.

Our critical examination of ARPANET procedures has had
an impact not only stream traffic communication, but on the
efficiency of packet switching in general. The study of the
performance of destination buffering schemes has provided a
framework in which other such techniques may be examined.
We believe strongly that stream traffic communication (re-
mote voice communication in particular) is within the realm
of uses for packet switched networks, but much work is need-

ed in order to produce a usable system.




CHAPTER 2

LOOP CONTROL IN ADAPTIVE ROUTING*

2.1 Iptrocuction

In a packet-switched network in which some scheme of
adaptive routing of packets is used, there exists the possi-
bility that packets will become trapped in loops. That is»
packets may be routed in such a way that they return several
times to some set of nodes for at least a finite period of
time before reaching their eventual destination, thus wast-
ina network bandwidth and significantly increasing message
delay. Routing Loops are of concern in stream communication
primarily because of this increased delay effect. In this
chapter we consider procedures for controlling such loops.

The problem of Llooping 1in adaptive routing has been
known to exist for some time Cxahn 711, CFult 721,
CGerl 73], [McQu 741, [Cegr 751, L[Pick 761, [(Gall 77]. Pre-
vious approaches to this problem have been to detect and
remove Loops C(Kahn 711, C(CFult 72]), or to reduce the in-
cidence of such loops [McQu 741, [Cegr 75). Gerla [Gerl 73]
proved that an optimal routing policy must be loop-free.
More recently, with a procedure known as the "last m nodes

visited" (LMNV) algorithm [Pick 761, the packets are
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prevented from looping in loops of size m nodes or smaller.
Gallager has created an optimal routing scheme which is
Loop-free [Gall 77]. We first give two examples of existing
networks whose adaptive routing algorithms can cause such
loops. We next investfgate the order of maagnitude of the
degradation due to Lloops. We then describe a new ping-
pong-free and a new loop-free algorithm. £ formalism for
dealing with the Loop problem 1is introduced in order to
prove the loop-free broperties of the algorithms. Then by
way of simulation we compare the performance of several of

the routing update schemes.

2.2 Examples of looping

Below we describe four routing wupdate procedures at
least three of which may cause looos to occur. There is a
degree of commonality among these schemes. In eack oro-
cedure there exists 3 routing table at each node whose en-
tries indicate the direction (i.e.,» the channel or neighbor
address) in which to send a packet headed for a particular
destination (see Figure 2.1). When a packet arrives at a
node (say node i), one uses that packet's destination ad-
dress d as an index into the routing table to determine the
channel c¢(i,d) over which to route that packet. The differ-

ences in these routing procedures appear in the updatirg of

these tables.




Index =
L’ : Destination address Channel address Delay estimate
‘ %

d ¢(i d) (i, d)

Figure 2.1. Routing table (node i)




2.2.1 ARPANEI procedures

Each of the first three procedures have been wused in
the ARPANET [Robe 70], ([(McQu 72]1. The first two can cause ;
Loops. The third scheme is currently in operation and is

believed to prevent at least ping-pong loops.

2.2.1.1 Loop prone routing (LPR)

In the ARPANET each entry in the routing table consists
of (among other things) a delay estimate and the address of
the <channel for which that delay estimate holds [McGu 741,
CmcGu 76al, [Klei 76]. The table is updated upon the ar-
rival of a routing message from a node's neichbor. The
routing message is a copy of the delay portion of the
neighbor's routing table. The delay estimates in that

node's routing table are compared with the routing table

delay estimate entries in the arriving update message plus
the delay from that node to its neighbor (currently 4 units
+ 1 wunit for each packet on that channel's queue). The
smaller of the two values replaces the routing tabtle esti-
mate and the "best delay channel" is chanaed if necessary.
More precisely; Node i upon receipt of a routing update
packet from neighbor node j performs the followinc algorithm

for each d:

LER

! 1 t'(ird) = t(j,d) + qCi,j) + h

i Z if t'(i,d) < t(i,d) then c(i,d) = c'(i,J)
3 if cCirsd) = ¢c'(irj) then t(i,d) = t'(i,d)
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where t(j,d) = the delay estimate from node j to node d.,

q(isj) = the length (in packets) of the queue from node i to
neighbor node j» h = the one hop delay bias (currently &
units 1in the ARPANET), c(i,d) = the (next) channel on which
to route a packet residing at node i destined for node d.
and c'(i,j) is the channel which connects neightors i and j.
This is a simplification of the actual alaorithm, but the
essential features are retained.

Consider the network topology pictured in Figure 2.2.
Wwe are concerned with the estimated delay from nodes B and C

to some distant node D. We will use the followina notation

of [Klei 75al:

d/A d

estimated delay to node D

A

next neighbor in path to D

B->C node B sends a routing update to C

Figure 2.2. A portion of a network.

The following sequence may occur if B's delay estimate to D

increases rapidly (at the second step in the sequence).

Node B Node C
B=>C t/A t+4/8
A->B t+9/A
c->8 t+8/¢C

18




B sends an wupdate to C which sets up the initial state.
Non-empty queues are formed within A and B (B in A's direc- %
tion and A away from B) when A sends an update to B. This
increases B's delay estimate by 9 units. C then instructs R
(based on B's old delay estimate) that the delay via C is F
now smaller. This causes B to point the route toward C, but

C still points toward B. Therefore a loop is created.

2.2.1.2 dold-down routing (HDR)
This kind of loop was eliminated by the addition of the
constraint that if the delay estimate changes by more than R®
i units on a given line between updates then the node enters
"hold-down" state on that line and will not switch (even
thkough the delay estimates may be better in another direc-
j tion) for approximately two seconds. «e will not attempt to
explain this further than to say that it allows for news of
drastic changes to propagate through a part of the network
before routing changes are made. For further details see
C¥cau 74].
Let us consider what may happen when B's delay estimate
to node D gradually increases. We assume that there are
twice as many routing messages from C to B as from B to C.
This is possible because the rate at which updates occur is
based on Lline speed and line utilization. For a 50 kbps
Line they occur at a minimum rate of one every 640 msec. and
8 maximum of one every 128 msec. (See Chapter 4 for a more

complete description.) We denote Lltine hold=-down by an

>
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exclamation point in the followino sequence.

Node B Node C
B=>C t/A t+4/8
A->8B t+5/A
c->8 (no change)
A->B t+9/A
c->8B t+8/¢C
B->C t+13/R!
c->8 t+17/¢C!

This Lloop (called a loop-trap in [Klei?75al]) will remain for
a period of approximately two seconds (the hold-down time)!

Conditions similar to this have been observed on several
occasions, and account, at lLeast in part, for the degrada-
tions suffered during experiments with stream communication

in the ARPANET [Cohe 741, [Nayl 741, [Forg 75].

2.2.1.3 Modified hold-down routing (MHDR)

Notice that the example of a loop under HDR is a result
of the variable rate updating. After lLoop-trars were ob-
served [Nayl 751, the hold-down scheme was modified in 1975
to make the criteria for entering hold-down independent of
update rate. That is to say whenever a delay estimate
changes by more than eight units over an arbitrary number of
updates then hold-down is entered. This means that a gradu-
al build ur of traffic can cause hold~down to occur. In

fact hold-down would occur prior to many routing changes.




This change may have produced a loop-free routing algorithm.
(we shall not attempt a proof or counterexample here.)
Surely some (possibly many) desirable route changes are

eliminated or delayed by such a scheme however.

2.2.2 The TIRAS NEI progcedure

This loop phenomenon is not unique to the ARPANET, as
we now show. The entries in the routing table proposed for
the TIDAS network in [Cegqr 751 contain a delay estimate for
each of the nod2's channels to a destination. The early
ARPANET had such tables as well until the size of the net-
work prohibited them. when a packet arrives, the routing
procedure chooses the channel with the smallest delay esti-
mate (to the packet's destination) in the table, and routes
the packet over that channel. Updates of the table are done
in two ways:
a) "inside” (i.e., using only Llocal information: queue

lengths and previous delay estimates).
b) "outside"” (i.e., using information contained in a rout-

ing message from one's neighbor).
The routing message contains a delay estimate vector which
gives the delays from the sending neighbor but net ttFrough
the receiver of the routing message. That is, when A sends
a routing message to B, the second best delay estimate is
sent for those destinations whose best delay channel is
toward B. This method 1is referred to as "split horizon”

updating in [Cegr 75]. We shall use a two-component notation

21
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similar to the above with the network structure shown in

Figure 2.2. The following may occur with the stated algo-

rithm.
Node B Node C
t/Aa, t+12/C t+2/8, t+10/E
A->B t+13/A, t+12/C t+2/8B, t+10/€

This loop may be eliminated with the next routing message.,
or it may set up a chain of loops in the direction of E. We
are merely pointing out here that lLoops form easily under
this routing procedure. In fact, in simulations of this
procedure "ping ponging"” was clearly present. According to
Cegrell CCegr 75] ping-ponging was significantly reduced by
the split horizon technique and immediate updating in the
case of node or Line failures.

Although Lloops involving more than two nodes are possi-
ble with both of the above schemes, we will not present any
such examples. PFulti-node lLloops cause a much larger degra-
dation in network performance than do 2-node (ping-pong)
Loops, but their Likelihood of occurrence appears to be sig-
nificantly smaller than that of the two-node loop. It ap-
pears to be impossible to prevent these lLoops when each node
has only lLocal information. The feasibility of each node
carrying and adequately updating global information is ques-
tionable.

In the next section we examine the magnitude of the

degradation in the ARPANET caused by the occurrence of

22




Loops.

2.3 Degradation due to loops

Having shown that loops can occur, we now examine the
degradation to network performance caused by loops in terms

of the Lenoth of time they naturally persist. That is to

say, we Wwish to determine how lLlong it takes to eliminate a
Loop under the current ARPANET routing update rates. This
persistence time is of interest since, if Lloops disappear
quickly, then there would be no need for prevention or rapid

detection and removal. We first define the following quan-

tities.

p = Routing update period.

n = Number of nodes in the Loop.

L = Total Local delay estimate in the (oop (in the
current implementation | = 4*n, assuming the ab-
sence of packets traversing the lLoop)

d = minimum delay estimate difference over all neigh-
bors outside the Lloop.

k = Processing time for a routing message.

x = Transmit and propagation delay for a routing mes-

h sage.
? y £k ¢ x.

; The Lloop will be <cleared whenever a routing update.,
from outside the loop, arrives and results in a smaller
delay estimate directing packets out of the loop. This can

happen as quickly as it takes to process an arriving routing
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message, if delay estimates outside the Loop decrease quick-
ly. Thus the minimum breaking time is essentially zero. 1If
we assume that the delay estimates outside the Loop remain
fixed, then we must traverse the loop with routing updates a
maximum of ceil(d/l) times (where ceil is defined to be the
usual ceiling function, i.e., ceil(A) = the smallest integer
greater than or equal to A)., This causes the internal delay
estimate to be greater than the external delay estimate.
The maximum time which a Lloop can persist, assuming the
exterior delay remains fixed, is

p+ty+ n(p + ydceilld/Ul)

To compute @ minimum we assume that the nodes are synchron-
ized in such a way that a routing message is sent just after
the receipt of one from a neighbor. We obtain for our
minimum

yn(ceil(d/L)) + (ceil(d/L)=1)(ceillyn/p)p-yn) + k

The first term accounts for the correct number of Lloop
traversals required to increase the internal delay estimate
beyond the external delay estimate. The Llast term accounts
for the processing of the one required update from the
external node. The middle term accounts for the fact that
routing updates may happen no more often than one every p
msec over each channel. Table 2.1 shows the removal time
for loops of size up to ten nodes, using a value of 25 for x
and 15 for k (see Chapter 3) and assuming that the Lloop is

caused by a minimum delay estimate difference so that
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ceil(d/Ll) = 1.

Loop p=640 msec p=128 msec
Size Maximum Minimum Maximum Minimum
(nodes) (msec) (msec)

2 2040 95 S04 95
3 2720 135 672 135
4 3400 175 840 175
S 4080 215 1008 215
6 4760 255 1176 255
7 5440 295 1344 295
S 6120 335 1512 335
9 6800 375 1680 375
10 7480 415 1848 415

Table 2.1. ARPANETY Lloop persistence time

In general routing updates among neighbors are neither
synchronized nor completely unsynchronized. Thus the ex-
pected Loop persistence time lies between the two extremes.
It 1is now clear that lLoops do not disappear quickly, on the
average. Therefore it would be useful to examine methods of

prevention or at least rapid detection and removal.

2.4 A direct approach to loop contrel
Below we describe two Lloop control algorithms for sin-
gle entry routing tables (as in the ARPANET). The first is
ping-pong or Llocal Lloop-free and the second is general

Loop-~free.

2.4.1 A Logal loop-free routing algorithm (LLER)

The basic idea for eliminating Local loops is to ignore
one's "old” information. Each node ignores routing informa-

tion which points in that node's direction. Routirg message
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entries are marked so that the receiving node krows which
entries point toward it and which do not. Only those en-
tries which point away are used in the update. More pre-
cisely; we add to each entry in the routing update message
the best delay channel number c(j,d), and a neighbor table n
is appended to the routing update. An entry n(jr,k) aqives
the address of the neighbor connected to j on channel k.
(Entries could be marked with a single bit, but this re-
quires the sending of a different routing message to each

neighbor.) €Each node i performs the following alooritbm:

LLER

1 m = k such that n(j,k) = i

2 for each d

3 if c(jod) # m then do

4 t'(i,d) = t(j,d) + q(j,d) ¢+ h

5 if t'(isd) < t(i,d) then c(ird) = ¢'(i,j)
6 if cCi,d) = ¢c'(i,j) then t(i,d) = t*'(i,d)
4 end

in a later section we prove that this algorithm can

create no tocal loops.

2.4.2 A logp-free routing alaorithm (LER)

The Lloop-free routing algorithm consists of LLFR at
one- and two-connected nodes with the addition of the fol-
lowina for three- (o¢ more) connected nodes (where a node's

connectedness is defined to be the number of directly
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connected neighbor nodes). When 2 routing update indicates
that a change should occur at a three~ (or more) connected
node a "loop-check” control packet (LCP) is sent, over the
new channel, one for each destination which would be effect-
ed by this route <change. The idea being that if the LCP
returns to the sender, then a Loop would be created by such
a routing change. If an end-to-end acknowledgement (RCP)
for the Loop-check packet returns to the sender, then he
upaates his table and uses the new route. Otherwise (the
Loop-check packet, an "I'm~checking” packet (ICP), or noth-
ina returns) he 1ignores the new route until (possibly)
another routing update is received. Loop-check packets are
routed through the network in the usual way (i.e.,» along
existing allowed paths) except that at any node which is
also checking a new route for that same destination; such a
node must send an I'm-checking packet to the source of the
loop-check packet and discar1 the Loop-check packet. Rout-
ing message entries Tor any destination site involved in
Loop-check are specially marked so that the information will
be ignored ty the receiver of the routing message. Stated
more precisely the assimilation of a routing message is done

under the following algorithm for each d:
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LER routing message assimilation

1 if x(i,d) = NULL then do

2 if ¢c(j»d) = m then do

3 if c(i,d) = c'(i,j) then do

4 local loop detected!

5 tGir,d) = t(j,d) + |

6 end

7 end

e else do

9 t'@is0) = t(j,d) + U

10 if c'(irj) = x(3,d) then y(i,d) = t'(i,qd)
1 else do

12 if t'(Gi,d) < y(i,d) then do

13 yC¢i,d) = 0

164 x(i,d) = NULL

15 end

16 if t*'(i,d) < t(i,d) and x(i,d) = NULL then do
17 if i is > 2-connected then do

18 xCir,d) = c'(i,j)

19 y(i,d) = t*'(i,d)

20 send LCP to d via c'(i,j) with new seq no
21 end

22 else c(i,d) = c'(i,j)

23 end

24 end

25 if cCisd) = ¢'(irj) then t(i,d) = t'(i,d)

26 end




27 end

where x(i,d) is the test channel for destinaticn ¢ at node
i» y(i,d) is the test channel delay estimate to node d from
node i, m is defined as in LLFR, and L is the Llocal delay
(e.g.» L = q(i,j) + h). Some additional processing of a
packet is required as it arrives from a channel:

LFR additional packet progcessing
101 if ICP for i then do

102 if current sequence number then do
103 x(i,d) = NULL

104 y(i,d) =0

105 end

1C6 discard packet

107 end

108 if LCP then do

109 if source = i then do

110 if current sequence number then do
111 x(ird) = NULL

112 y(ir,d) = 0

113 end

114 discard packet

115 end

116 if destination = i then do

117 send RCP to source

118 discard packet

119 end




120 if x(i,d) # NULL then do

: 121 discard packet
b 122 send ICP to source
| 123 end
124 end

= 125 1if RCP for i then do

126 if current sequence number then do
127 tGi,d) = y(Gi,d)

128 cCir,d) = xCi,d)

129 x(i,d) = NULL

130 y(i,d) =C

131 end

132 discard packet

133 end

134 if packet not discarded then do normal packet processing

It is useful to consider how these algorithms would
affect the ARPANET. These alagorithms appear to fit easily
within the current ARPANET system with respect to the fol-
lowing:

1. The same routing message may be sent to each of a node's
neighbors.

2. Routing updates fit within the current packet size res-
trictions.

3. The processing complexity is not significantly increased.
(In the case of LLFR, processing is certainly less com-

plex than HDR or MHDR.)
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Wwe expect that the frequency of sending of the I'm-checking
packet is quite small. The frequency of both of these new
types of control messages may only be tested by careful
measurement, however. Notice that to avoid race conditions,
one must not send a routing update while in the process of
updating his own table, and routing messages must not be
allowed to cross paths (i.e., sent from A to B and from B to
A in the same time span). This 1is easily dealt with by
using a pair of seguence numbers in the routirg packets.
Node A ignores B's update unless it contains A's Llast se-
quence number.

We expect that the performance of LLFP is better than
HDR, since it is less complex yet guarantees that no local
Lloops occur (as we shall prove). For LFR, the overhead 1is
much higher. There is some extra computation recuired when
a packet arrives. This added computation 1is insignificant
when compared to the slowness of routing chances and the
requirement that network bandwidth be used by the loop-check

packets.

Routing changes at three- or mo}e connected nodes can-
not occur, on the average, more quickly than about 12 msec
per hop in the new route (200 bits in a loop-check packet
and 200 bits in an RCP gives 8 msec transmission delay. An
additional 2 msec is required for processing of the packets.
Add to that about 2 msec in propagation delay per hop.) The

average network distance in May 1974 was 6.24 hops, with a
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maximum of about 11. Hence, one can estimate that on the
average a minimum of 75 msec is required to make 2 routing
change after it has been suggested by one's neichbtor. 1If
one assumes that loop-check packets are high priority (i.e..,
next to ao out on the channel) and that a full packet has
just started out on the Line when the Lloop-check packet
arrives, then the delay increases to about 60 msec per hop.
This suggests that the maximum switch time is on the order
of 700 msec. Our experience shows that, on the average, a
small number (<5) of destinations are involved when a switch
occurs. At no time would a three-connected node loop-check
more than about 1/3 of the nodes (less than 20 nodes at
present) 1in the network after a routing update. So that
between 50 and 220 msec of channel time and 5 to 20 buffers
along the way might be utilized.

An alternate method of sendina the Lloop-check packets
could be wused to trade computation for storage and line
utilization. One may send a multi~destination packet which,
along with the wusual packet header, contains some (&
currently in the ARPANET) words of addressing information.
These addressing words consist of one bit for each node in
the network. The packet is marked by the sender with a one
bit for each destination for which a Loop-check is required.
Then it is sent over the new channel. Each node which en-
counters the packet is required to:

1. Send an RCP if its own bit is on’

2. Turn its own bit off;
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3. Send an ICP to the source marking those destinations
being checked by both this node and the source’

4. Turn off the bits for those destinations being
checked by both this node and the source’;

5. Discard the packet if all addressing bits are now
off;

6. (Possibly) duplicate the packet’;

7. Mark the copies with those destinations pointed to
by each of the channels as indicated in his routing
table; and

8. Forward the packet(s) on their way.

This method would cut some of the channel and storage over-

head at the expense of some processing overhead.

Below we present a proof that the algorithms do prevent
loops. 1In a later section we present our experience with

these algorithms through simulation.

2.5 troofs of Loop-freeness

There are a number of definitions which facilitate the
proving of the Loop prevention properties of these algo-
rithms. These definitions help 1in the understanding of
these properties as well. The algorithm may be described by
a graph structure in which there are directed and non-
directed arcs. The non-directed arcs are the Lines between
neighboring nodes. The directed arcs represent the direc-

tion that a packet to a particular destination would be
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sent. There exist a set of operators which: (1) replace

directed arcs (routing changes); (2) remove or create non-
directed arcs (network failures and recoveries).

we define a network to be a graph G consisting of a
set X of nodes rélated by three relations:

n(eighbor), r(oute), and (te)s(t route)
If x1, is a neighbor of x2 in the graph G then x1 is
in the set n(x2) and x2 is in n(x1). A node X is
k-connected if and only 1if there are exactly k distinct
nodes in n(x). We will refer to a k-connected node as
multi-connected if k>2. The next node in the route to a
particular destination xd from x?1 s r(x1) . We shall
fix the destination xd here, and drop reference to it for
simplicity. AlL succeeging definitions (and proofs) refer
implicitly to a particular destination. Loop-check packets
from node x are routed to the test route s(x) from X .
Note that s(x) = NULL for all nodes except those in loop-
check mode. A loop, of order k , is defined to be the fol-
Lowing condition:
condition 2.1:
At some instant, there exists a set Y = (yl,y2sr...,yk),
k>1, 3 subset of X, such that xd, the destination, is not

in Y and

r(yi) y(i+1) for i =1,..., k - 1 and

r(yk) yl .

Notice that this 1is static (for possibly a short time)

34




B Db bl A o AT i

condition among the routing tables of several nodes. We do
not intend to include in this definition transient condi-
tions under which packets may actually loop (e.g., Lline or
node failures).

A routing transformation T on G changes the route or
test route of a single node pair. i.e.r

T1(6) is defined as follows:

a) T(r(x)) = r(x) for x not = x0.
T(r(x0)) = r*(x0) for some node x93, and

T(s(x)) s{x) for all nodes x; or

b) T(r(x))

r{x) for all x not = x0.,
T(r(x0)) = s(x0) for some node x0.,
7¢(s{x)) = s(x) for x not = x0, and

T(s(x0)) = NULL,; or

¢) T(r(x)) = r(x) for all x not = x0,

T(s(x)) s(x) for x not = x0, and

]

T(s(x0)) = NULL for some node x0N; or

d) T(r(x)) r(x) for all nodes x.

T(s(x)) s(x) for x not = x0, and

T(s(x0)) = s'(x0) for some node xO.

In case (a) the route from node x0 is changed to a neighbor
which is not the test route (which can happen only at one-
or two-connected nodes). In case (b) a new route from node

x0 is chosen to be the test route following a successful

—
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test. In case (c) the test route from node x0 is dropped
following an unsuccessful test. 1In case (d) a test route
from node x0 is established. (Routing transformations which
would occur simultaneously in an operating environment will
be ordered by node number, say, and be executed sequentially
here.) We claim that LLFR and LFR have T with the following
property.

Property 2.1:

o If r(x) y» then T(r(y)) not = x;

be if r(x)

[}

y» then T(s(y)) not = x;

]}

c. if s(x) ys then T(r(y)) not = x; and

do if s(x) then T(s(y)) not = x.

[}
<
\

Proof of Property 2.1:

LLER
Property 2.1 (a) is guaranteed by step 3 in the LLFR algo-
rithm. Property 2.1 (b), (c) and (d) are vacuously satis-
fied by LLFR since no test routes are ever established.

LER For nodes y which are two- (or less) connected no
test routes are ever established, thus proving parts Lt and
d. Part a8 is guaranteed by step 8 in the LFR alaorithm.
Part ¢ is similarly guaranteed by step 1. Ffor nodes y which
are three- (or more) connected parts b and d are quaranteed
by steps 8 and 1 respectively. Multi-connected nodes create
actual routes from successful test routes. During the test-
ing of a route by a node, his neighbor (along that route) is

restricted from establishing a new route opposite to the
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test route by step 1. Hence parts a and ¢ are true for

multi-connected nodes as well.

Lemma Z.1: Loops of order 2 cannot occur as a result of the

application of LLFR or LFR.

Proof: This is a trivial consequence of Property 2.1. Sup-
pose that there exists a lLoop of order 2 after the applica-
tion of some T with Property 2.1. Then there exist neigh-
bors x and y such that:

T(r(x)) =y and T(r(y)) = x (*x)

In this case, there are 4 possible states prior to the ap-

plication of T:

1) r(x) =y and ry) = x.,
2) r(x) =y and r(y) not = x,
3) r(x) not =y and r(y) = x, and

4) r(x) not =y and r(y) not = x.
State 4 cannot exist since T may modify only one r (this is
where the synchronizing of neighbors is important in an
operating network). State 1 is a previously existing loop
and hence was not caused by T. States 2 and 3 are sym-
metric. Thus we consider only state 2. Since T has Proper-
ty 2.1, and r(x) =y , then T(r(y)) not = x ,» in contrad-

iction to the supposition at the beginnina of the proof.
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Thus (*x) cannot occur.

C.E.D.

We have proved the following theorem.

Theorep 2.1: The LLFR algorithm is free of Llocal Lloops.

We now concentrate on LFR.
Lemma 2.2: A one-connected node cannot participate in 2

multi-node Loop (i.e.» a loop of order k>2).

Proof: A one-connected node has only one neighbor. If a
one-connected node participates in a loop it must be of ord-

er 2.

OIE.D.

Lemma 2.3: Loops of order greater than 2 cannot be caused by

a routing change at a two-connected node.

Proof: Suppose a loop of order k > 2 is created by a
transformation at a two-connected node y . The loop then

satisfies Condition 2.1 in the following way:




TCr(x1)) = r(x1) = x¢

TCr(xi)) = rxi) = y

T(rly)) = r*(y) = x(i + 1)

TCr(x(k = 2)) = r(x(k ~ 2)) = x(k = 1)
TCr{x(k = 1)) = ri{x(k -~ 1)) = x1

Also we have that r(y) not = x(i + 1). In fact, since y
is two-connected we have r(y) = xi . PBut rixi) =y . This
is a pre-existing loop of order 2 which by Lemma 2.1 cannot
occur.

G.E.D.

Lemma 2.4: Loops of order k > 2 cannot be broken by a two-

connected node.

Proof: Suppose a lLoop of order k > 2 contains a node of

order 2. Any routing change at that node alone would be a

violation of Property 2.1.

Q.€.0D.
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Lemma 2.5: If a routing transformation causes a Lloop to

occur then the node x0 , for which T(r(x0)) not = r(x0),

is contained within the Lloop.

Proof: Suppose after the application of T there exists a
loop among a set Y of nodes. If x0 1is not in Y , then
for all y 1in Y we have T(r(y)) = r(y) , which implies
that the Loop existed prior to the application of T. Hence.,
xU must be in Y .

G.F.D.

Lemma 2.5 shows that the loop-check packet has the pos-
sibility of being returned to its sender, if a loop would

have been caused by that routing change.

Thegorem 2.2: Loops cannot occur as a result of LFR.

Proof: we have previously proved that 2-order loops do not
occur (Lemma 2.1) and that k-order lLoops for k > 2, are
independent of (i.e., cannot be caused or removed by) two-
connected (or one-connected) nodes (Lemmas 2.2, 2.3 and
2.4). Me shall now show that loops of order k > 2 cannot be
caused by transformations at multi-connected nodes. Suppose
that we restrict the number of concurrent multi-connected

node transformations to one. That is to say. only one node
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may test any particular destination. Suppose that a loop
would be created by a transformation at node x, a multi-
connected node. Since x is multi-connected it is recuired
to test the new route with a loop-check packet. There are
four possiktle outcomes from the sendinag of this loop-check
packet:

1. The loop-check packet returns.,

2. An I'm-checking gacket returns (If some other node
is checking).,

3. Nothing returns (If the message is lost or tbLecomes
trapped 1in a loop independent of x, should one
occur), or

4. An RCP returns.

In cases 1 through 3 no switch will be made in the route
from x, and hence no loop cre¢ted. In case 4 we have the
fact that the loop-check packet from x reached its destina-
tion. Since no other routing changes occur, any of x°'s
packets will also reach the destination by followinc the
exact route that the LCP took. Therefore rno loop erists.
Hence a routing transformation at only one multi-connected
node cannot cause a loop.

we now proceed by induction on the number of concurrent

multi-connected node routing switches. Assume that n-1 or
Less concurrent switches cannot cause a Lloop. Suppose n
concurrent switches have caused a lLoop. Consider the ac-
tivity of node x, that node which is Llast to start Lloop

check. Again there are four possible responses to x's LCP.

41

Sl st oaataat s Lo gian 20 b h e kil bl A sl e s o e L




They are as listed above. If 1, 2 or 3 occurs then x will
not switch routes which contradicts the supposition that n
concurrent switches caused the Loop. Therefore we need only
consider response 4. There are two possible ways in which
this may occur.

(a) x's LCP arrives at none of the other n-1 nodes

involved, or
(b) x's LCP arrives at (at least) one of the other n-1
nodes after that node has completed switcring.

In case (a) the switch at x must be independent of the Lloop.
No switch occurs at any of the nodes which x's LCP
traverses. Therefore x cannot te part of the loop, since
all packets from x will reach the destination as did the
LCP. Therefore the switch at x could not have been reguired
to form the Lloop. That is the loop would have been <created
whether or not x switches. This contradicts the supposition
again. In case (b) we have that the loop <could have been
caused bty less than n concurrent switches, which contradicts
the induction hypothesis. Hence there exists no n such that
n concurrent transformations at multi-connected nodes causes

a Loop.

An adaptive routing procedure should not be vulnerable
to network component failures (i.e., Line or node outages).
We have not shown that the algorithm is invulnerable to net-

work failures. It is clear, however, that a loop cannot be
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caused by a failure (i.e.,» the removal of an arc). A
recovery cannot cause a Loop either because when a3 Line
comes up it has no direction in a path. Therefore, no loops
are created by a failure or a repair. However, on failure
(or repair) some routes must change. This may cause flood-
ing of the network with LCP's which is clearly one of the

undesirable features of LFR.

2.6 Simulatiop results

In order to examine the performance of these routing
procedures we here present the results of simulation. The
simulation was performed under the following conditions:

Topology: ARPANET (June 1975) modified to exclude

satellite Links.

Lines: ARPANET capacities (mostly 50 kb/s, some 230.4

kb/s).
Nodes: Infinite storage, two processor speeds
(316 - 1.6 usec/cycle and 516 - .96 usec/cycle).

Traffic pattern: Uniform traffic matrix (i.e., same
intensity between all pairs of nodes). Arrivals
to the network form a Poisson process. Exactly
the same traffic was generated for each of the
several routing schemes examined.

Message Llength distribution: Exponential truncated at

8064 bits, with a mean of 122 bits. (The mean is
one half of that reported in [Klei 741 to allow

for RFNM's which have zero text bits. Fy reducing
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the average message size we attempt to more close-
Ly model the actual packet size distribution which
consists primarily of data packets and RFNM's in
the ARPANET.)

The results of simulation are shown in Figure 2.3.
Network wide mean (one way) delay is plotted as a function
of relative offered traffic intensity (load) in this figure.
We observe that all algorithms produce the same network wide
mean delay wup to an offered traffic lLoad of S (SCO packets
per second). At 10 we see that LPR blows up (i.e., average
delay > 500 msec). (Actually the simulation failed to reach
equilibrium at this load.) This is due to the <creation of
many \oops. Also at Lload 10 HDR and LLFR perform better
than LFR. (At this load no multinode lLoops are yet prevent-
ed). The most interesting result is that while both HDR and
LFR blow up a2t a load of 14, LLFR continues with finite
delay to at Lleast 16 (the highest load simulated). LLFR
exceeds the performance both in terms of del ay and
throughput at all levels of offered load. This is not too
surprising since multinode Loops occur very infrequently.
Therefore the overhead which LFR requires to guarantee
Loop-freeness is ill spent in the topology and traffic pat-
tern of the simulation. Since local Loops may (do) occur
with HDR, it performs worse than LLFR which prevents such

loops.
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Figure 2.3. Comparative performance of adaptive routing procedures (simulation).
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There were no lLoops observed below a load of 10 in this
simulation. In different topologies (and non-uniform traff-
ic rates) it is possible to create loops at lower loads. At
Lload 10, 30% of the routing changes at two-connected nodes
resulted in Llocal Loops for LPR. HDR had no loops ufr to a
Load of 14 at which point 21X of the two-connected node
routing changes resulted in Llocal Lloops. The numter of
loop-traps was unfortunately not measured in the simulation.

As for the frequency of packet lLooping, there was none
until load 10 for LPR, Load 14 for HDR, and Lload 15 for
LLFR. As expected, no Looping other than LCP's was observed
for the LFR simulation. The percent of packets which looped
was 4.8, 2.6, and .8 respectively. (The values for LPR and
HOR are subject to question since the simulation dicé not
reach equilibrium in these cases.)

Both LLFR and LFR prevented local loops begining at a
load of 10. LFR began to prevent multinode loops at a load
of 12. The average delay to receive an RCP increased with
load (as expected). The average had a range of from 246 to
275 msec. The average number of LCP's per test (i.e., the
average number of destinations involved) remained fairly
small but increased with load from a minimum of 1.1 to a
maximum of 2.8, This suggests that multiaddressed LCP's
would not help efficiency significantly. It also suggests
that LFR has the nasty habit of increasing its overhead when
the network is heavily loaded.

In the simulations we have assumed that each of the
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routing update schemes requires the same amount of process-
ing as does HDR. This is clearly not the case indicating
that at least for LLFR we have shown a lower bound on per-
formance with respect to HDR. It should be noted that LLFR
and LFR eliminate the need for performing any computation
(beyond the initial test) for a fraction 1 - 1/k of the
entries in the routing table on the average, where k is the
connectivity of the neighbor. The issue of processing over-

head is discussed more fully in the next chapter.

2.7 Conclusions

Our intuition, which is now supported by simulation.,
tells wus that multi-node loops occur very infrequently in a
“"reasonable” topology and traffic pattern. Therefore., since
LFR 1is so complicated, its practical worth is questiorable.
However, it is interesting to know that such a scheme ex-
ists.

Local Lloops, on the other hand, occur much more fre-
quently and in fact were observed in the ARPANET as well as
in simulation. Therefore LLFR is of practical significance.
Indeed the simulation results indicate that LLFR is the best
among the procedures studied so far. In Chapters 3 and &
other routing procedures are investigated. We defer our

recommendations regarding routing until after Chapter 4.




CHAPTER 35

SYSTEM PRIORITIES

3.1 Introduction

The inclusion of levels of priority within a system
allows that system to give different Levels of service to
different classes of customers. This is a wuseful property
of 2 system which 1is to support a variety of activities
simultaneously. The ARPANET, for example, was originally
designed to support both interactive (terminal-to-computer
and computer—to-terminal) traffic as well as moving Llarge
amounts of data from place to place in the network
(computer-to-computer communication). BBN has thoughtfully
provided a priority structure within the network nodes. 1In
this chapter we partially examine that priority structure
and its effect on performance. The result of this examina-
tion points out the general rule that careful consideration
must be given to priority at all points of service within
the system in order to quarantee the desired level of ser-
vice to each customer class.

Initial analysis and design of packet switched networks
assumed that the nodal processing time was small and fixed
[Klei 64), (Fran 701, (Hear 701, (Klei 703, C(Fran 723 and
others. cCften, in fact, this contribution to delay has been

neglected in comparison to the time spent waiting for and
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using the channels in the network. In short, the transmis-

sion lines were the bottleneck in the system. The ARPANET
in fact was designed with this underlying assumption. (One
must in general attempt to fully utilize the most expensive
component in a system.) Here we present measurements which
demonstrate that nodal processing time is no Longer small or
fixed 1in the current ARPANET. Nodal processing delay is in
fact a significant portion of the overall network delay.
This need not be the case. The problem is one of assigning
the proper priority to tasks within the processor. This we

show through the use of analysis and simulation.

3.2 Measured Results

A large increase in network wide mean round-trip delay
was noticed between the "weeklong" data collections of Au-
gust 1973 reported in [Klei 741 and May 1974. While the
traffic characteristics did not change significantly, delay
increased from 93 to 249 msec. This delay (while fairly
small) exceeds the ARPANET specification of 200 msec and has
remained at about this level even as Llate as Marchk 1977 when
another collection revealed a mean delay of 228 msec. Table
3.1 summarizes the information derived from the three week-
Long collections. There are three factors (listed in the
table) which would naturally have caused an increase in
delay between August 1973 and May 1974. Notice that in May
1974 (a) messages contained slightly more packets on the

averaqe, (b) messages traveled longer distances (in hops) on
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the average and (c) the mean channel utilization (with over-
head) was larger than in August 1973. The reason for the
sharp increase in channel wutilization is due to the fact
that the frequency of routing updates was increased approxi-
mately by a factor of five. ALlL of these three factors are
accounted for in the model of (Klei 741. Yet the model s
unable to predict all of the incr2ase. Wwhile actual delay
increased by 168% and‘ 145%, the model's precdictions in-
creased by only 95X and 44% from August 1973 to May 1974 and
from August 1973 to March 1977 respectively. This 1is due
(at Least 1in part) to the fact that the model of [Klei 743
assumed a small and fixed nodal processing delay which is no
longer true.

August 1973 May 1974 March 1977

Input rate (pkts/sec) 51 L4 108
Mean bits/msg 243 234 266
Mean pkts/msg T.11 1.12 1.18

Mean traffic weighted
shortest hop path 3.24 4.46 2.93

Mean channel
utilization
with overhead 071 .204 .237
Mean channel
utilization
without overhead .0077 .011 .012

Yean measured
round=-trip delay (msec) 93 249 228

[ktei 74] model
delay prediction (msec) 73 142 101

Table 3.1 ARPANET traffic and delay summary
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In examining the results of measurement experiments
involving the wuse of packet trace (Klei 76al, it becomes
clear that the processing delay has a measured value which
is much larger than the available estimates. Some examples
follow. Table 3.2 shows the results of an experiment in
which packet trace was collected with a frequency of 256
(i.e.,» a trace block was generated for every 256th packet
traversing a node) from several nodes in the ARPANET. The
data was collected during two approximately 20 hour inter-
vals in March 1975. Statistics for individual output Llines
are included (though one would not expect processing delay
to vary with output Line). The first six column headings
are clear, but the Last three require some explanation.
Smpl-Size (sample size) refers to the actual number of pack-
ets used to arrive 3t the previously Llisted statistics
(i.e., Mean, SDev, Min, Max). The mean, standard deviation.,
minimum, and maximum are expressed in milliseconds (msec).
Only store-and-forward packets which did not originate at
the From-Node may be included in the Smpl-Size, as packets
from a HOST do not have their "time-in" recorded properly
and thus are excluded from the statistics. They are, howev-
er, included in the To-Ch-Tot (to channel total) which aives
the total number of observed packets to be routed on that
output channel. The To-Task-Tot (to Task total) entry is
the total number of observed packets (store-and-forward and
reassembly) which were processed by the "Task" [McGu 72]

routine in the IMP.




From
Node

6
6
6

5
5
5

14
14
14

29
29
29

1
1

22
22
22

1
1
1

16
16
16
16

&
2
2

10
10

Table 3.2(a).

MIT
MIT
MIT

BBN
BBN
BBEN

CMuy
CMu
CMu

ABRD
ABRD
ABRD

STAN
STAN

ISI
ISl
ISI

UCLA
UCLA
UCLA

AMES
AMES
AMES
AMES

SRI
SKI
SRI

LL
LL

To

Node

31
47
44

31
50
49

38
27
18

46
19
27

16
22

i
48
S

8
3
35

15
45
36
1"

51
32
i

44
18

CCAT
WPAT
MIT2

CCAT
RCC
RCCT

PURD
BELV
RADT

RUTT
NBST
BELV

AMES
ISl

STAN
AFWT
ISIT

SDC
ucss
ucso

AMST
MOFF
HAWT
STAN

SRI3
XROX
LLL

MIT2
RADT

Observed processing delay in msec
(516 IMPs)

Mean

2.97
3.12
3.36

3.10
3.06
3.15

3.61
3.13
3.31

2.67
2.67
3.02

2.14
2.07

3.43
3iS59
3.46

2.81
2.90
23

4.19
Sl
3.76
4.18

3.02
2.96
2.89

1.80
2.46

SDev

4$.20
4.46
4.68

4.51
“.21
4.39

4.73
4.60
4.74

3.78
3.67
4.00

3.15
2.96

5.39
4.60
4.83

4.13
3.78
3.72

5.81
4.84
5.16
5.40

4.08
4.15
4.20

2.77
4.00

Min

]
Lo

« o .
S

DR
R

. L ]
S

| ]
S

LI | [
PN
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Max

36.1
36.4
28.3

33.9
25.0
30.4

32.6
33.3
23.8

30.6
23.3
23.9

26.0
23.4

38.1
27.3
26.6

29.5
20.7
22.6

40.6
26.8
31.6
31.5

25.5
27.6
24 .8

14.3
26.4

Smpl To~Ch
Size Tot
3349 3724
3260 4001
230 402
2852 3119
1345 1746
1581 2149
1959 2329
2071 2165
645 674
1592 1610
1691 1693
1346 1396
2027 2484
1935 21820
572 1437
S44 1311
577 3683
1210 1486
937 1001
1121 1598
983 1282
1284 1403
410 463
1427 1543
578 1069
1113 1301
1041 1728
73 119
21 G4

To-Task
Tot

8058
2958
8958

2065
8065
£C65

5930
5930
5930

4720
4720
4720

5029
5020

9096
°p96
9096

4346
4346
4346

4983
4923
4983
4983

4852
4852
4852

265
265

sl
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From To Mean SDhev Min Max Smpl To-Ch To-Task
Node Node Size Tot Tot

34 LBL 21 LLL 11.5 11.3 .7 62.2 3485 3492 10147
34 LBL 4 UTAT 10.6 10.8 <7 67.7 4B67 4956 1C147
34 LBL 45 MOFF 12.2 11.5 .7 64.0 1477 1610 10147

4 UTAT 34 LBL 17.1 30.7 .7 323.0 4769 5017 10534
4 UTAT 12 ILL 17.1 31.2 .7 333.2 4693 5102 10534

43 TYMT 32 XROX 18.2 16.8 .7 90.9 274 2724 5200
43 TYMT 33 FNWT 18.2 17.1 o7 71.2 222 630 5200

¢3 UsSCT & sboc 12.2 13.1 o7 162 800 1647 4559

23 USCT 25 poCT 12.6 13.0 .7 B1.6 990 1559 4559
25 DOCT 23 usct 10.8 11.7 .7 62.9 1041 1054 2096
25 DOCT 24 GWCT 11.4 11.7 .7 62.8 1020 1038 2096
28 ARPT 20 ETAT 9.70 11.1 .6 54.7 351 644 1114
28 ARPT 17 MTRT 10.6 10.6 .7 50.6 287 308 1114
27 BELV 14 CMmu 9.88 10.0 .7 S57.8 1247 1300 2791
27 BELV 26 SDAC 9.94 10.8 .7 52.8 391 361 2791
27 BELV 29 ABRD 9.18 9.94 .7 51.9 1061 1073 2791
44 MIT2 6 MIT 5.47 6.64 .7 32.5 113 219 391
44 MIT2 10 LL 4.67 5.87 .7 26.5 125 127 391

Table 3.2(b). Observed processing delay in msec
(316 IMPs & TIPs)

Only a portion of the total processing delay is meas-
ured by the trace mechanism, viz: (a) part of the Modem-to-
IMP routine processing time, (b) the time spent waiting on
queue for the Task routine, and (c) most of the Task routine
processing time. The sum of (a), (b)), an (c) is given by
the difference between T(2) and T(1) in the trace block. By
the estimates in [McQu 72] this value would have a minimum
of Less than 150+4250=400 cycles (approximately .38 msec for
a 516 IMP and .64 msec for a 316 IMP). The observed minimum

values confirm these estimates.




Table 3.2 has been separated into two parts with 516
IMPs Listed first followed by the 316 IMPs. There 1is a
clear distinction between these processor types (not
surprising since one runs at about 1.67 times the speed of
the other). (Not as clear a difference was observed between
those nodes with VDH £BBN 691 and/or TIP [Orns 721 software
and those without.) In both cases we see a wild variation in
processing delay, with mean values from 4.5 to 10.5 times
the minimum for 516s and from 6.7 to 26 times the minimum
for 316s. This phenomenon is nearly independent of time of
day as shown in Tables 3.3 and 3.4, which show the observa-
tions of two selected nodes over seven time intervals. (The
rather odd time intervals correspond to arbitrary file boun-
daries and provide similar sample sizes.) Notice again the
large variation 1in processing delay and the very high mean
values. Notice also that the mean values remain high even
under the more Lightly loaded evening hours, indicating (hut
not proving) that this effect is not due to the competition
of packets for the services of the Task routine.

For the model's predictions in Table 3.1 we have as-
sumed an average processing time of less than 1 msec per
hop. Taking a rough average of the values in Table 3.2 we
find that average processing delay for 516 IMPs is about 3
msec and about 11 msec for 316 IMPs. Roughly one third of
the IMPs 1in May 1974 were 516 IMPs. Assuming a uniform
spread of the traffic, the average nodal processing delay is

more than 8 msec. If we add 7 msec per hop to the predicted
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delays, we would expect to obtain a better prediction.
boing so we arrive at a value of 204 msec for May 1574 and
142 for March 1977. For May 1974 this new prediction is
slightly better than was the original prediction for August
1973. The March 1977 prediction is not as good. One reason
may be the flow control mechanism which was changed signifi-
cantly between May 1974 and March 1977. o0Delay 1is measured
in such a way to include the delay due to flow control.,
while there is no provision for this in the model.

From To Mean SDev Min Max Smpl To-Ch To-Task Time

Node Node Size Tot Tot Begin End
22 ISI 11 STAN 4.67 7.12 .4 33.1 118 254 1404 0952 1111

22 ISI 48 AFWT 4.06 4.58 .4 17.5 82 286 1404 0952 1111
22 ISl 52 ISIT 3.00 3.76 .4 15.9 125 484 1404 0952 1111

22 ISI 11 STAN 4.24 5.87 .4 27.3 66 219 1447 1111 1246
22 ISI 48 AFWT 4.13 4.78 .4 17.9 72 334 1447 1111 1246
22 IS1 52 ISIT 3.66 5.83 .4 26.6 52 432 1447 1111 1246

22 ISI 11 STAN 2.50 3.53 .4 13.5 55 205 1245 1246 14621
22 ISI 48 AFWT 3.31 4.51 .4 21.3 382 221 1245 1246 1421
22 ISI 52 ISIT 3.99 4.93 .4 26.1 78 479 1245 1246 1421

22 ISI 11 STAN 3.58 5.40 .4 26.2 50 223 1273 1421 1628
22 ISI 48 AFWT 4.71 5.94 .4 25.3 34 86 1273 1421 162%
22 ISI 52 ISIT 3.55 5.36 .4 26.3 76 521 1273 1421 162%

22 ISI 11 STAN 3.27 5.43 .4 34.0 86 219 1387 1628 1853
¢2 ISI 48 AFWT 3.50 4.85 .4 27.3 97 141 1387 1628 1853
22 ISI 52 ISIT 2.28 3.28 .4 17.0 5S¢ 585 1387 1628 1853

22 ISI 11 STAN 2.37 4.20 .4 30.3 106 174 1517 1853 2325
22 ISI 48 AFWT 2.99 3.92 .4 17.8 104 149 1517 1853 2325
22 ISI 52 ISIT 4.42 6.06 .4 26.4 95 743 1517 1853 2325

¢2 ISI 11 STAN 3.08 4.15 .4 20.5 91 143 823 2325 0529
22 ISI 48 AFWT 3.29 4.38 .4 25.7 73 94 823 2325 0529
22 ISI 52 ISIT 3.15 4.18 .4 20.0 97 379 823 2325 0529

Table 3.3. Variation of processing delay with time of day
o (516 IMP)
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From To Mean SDev Min Max Smpl To-Ch To-Task Time
Node Node Size Tot Tot Begin End

27 BELV 14 (MU 7.07 7.27 .7 29.82 140 153 341 0952 1111
27 BELV 26 SDAC 7.71 7.37 .7 25.2%8 81 81 341 0952 111
27 BELV 29 ABRD 8.66 8.72 .7 40.7 98 101 341 0952 1111
27 BELV 14 CMU 10.9 11.0 .7 49.7 165 176 431 1111 1246
27 BELV 26 SDAC 11.5 11.5 .7 38.8 114 114 431 1111 1246
27 BELV 29 ABRD 10.3 10.8 .7 42.7 130 131 431 1111 1246
27 BELV 14 CMu 10.2 11.5 .7 57.8 214 231 485 1246 1421
27 BELV 26 SDAC 12.7 13.1 .7 52.8 192 92 485 1246 1421
27 BELV 29 ABRD 12.6 13.2 .7 51.9 153 155 425 1246 1421
27 BELV 14 CMU 9.26 9.61 .7 45.1 128 132 256 1421 1628
27 BELV 26 SDAC 6.94 7.82 .7 22.1 20 20 256 1421 1628
27 BELV 29 ABRD 7.28 7.90 .7 29.9 102 104 256 1421 1628
27 BELV 14 CMU 10.0 9.69 .7 51.7 182 194 402 1628 1853
27 BELV 26 SDAC 5.09 5.53 .7 16.0 17 17 402 16282 1853
27 BELV 29 ABRD 7.84 7.93 .7 34.7 187 187 402 162F 1853
27 BELV 14 CMU 9.61 9.11 .7 40.6 166 168 356 1853 2325
27 BELV 26 SDAC 12.6 13.2 .7 49.4 27 27 356 1853 2325
27 BELV 29 ABRD 8.38 8.84 .7 43.0 159 161 356 1853 2325
27 BELV 14 CMU  10.9 9.97 .7 41.0 246 246 520 2325 0529
27 BELV 26 SDAC 5.60 6.30 .7 21.0 &0 40 520 2325 0529
27 BELV 29 ABRD 8.73 9.83 .7 45.7 232 234 520 2325 0529

Table 3.4. Variation of processing delay with time of day
(316 IMP)

In the previously described experiment it was not pos-
sible to empirically prove that the excessive delay is not
due to the interference of packets, since sampling was done.
To establish this, we resort instead to another experiment
in which we selected two nodes and collected packet trace
with a frequency of one. On close examination of the data
we find that for most packets having a long processing delay

no other packet overlaps it in time. We note that while
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some overflows occurred (i.e., lost data due to heavy traff-
ic) 1in the packet trace data the statistical properties are
nearly identical to those of the sampled data. We conclude
that most of the time the excessive delay is not due to the
interference of other packets.

At first glance, these Llong processing delays seem
rather insignificant in the entire scheme of thinas. Let's
examine them a bit more closely. Table 3.5 gives the aver-
ages for processing delay, waiting time, and acknowledcement
time, for three packet types - (1) subnet control (largely
end-to~end acknowledgements, i.e.» RFNMs), (2) user priori-
ty, and (3) non-priority packets. Our interest is with the
store-and-forward delays, but we List the reassembly infor-
mation for completeness. The sample sizes listed consist of
two numbers. The first number indicates the sample size for
the C(hannel Waiting and Acknowledgement statistics, and the
second refers to the Processing statistics. Notice that
the time spent waiting for and being served by the Task
routine is on the same order as the time spent waiting for
the channel for the 516 IMP and always greater (about dou-
ble) in the case of the 316 IMP. We note that for these
measurements, non-priority packets traversed a 316 node fas-
ter, on the average, than both control packets and priority
packets (the order of service by Task is FCFS) even though
the channel waiting time is greater (as one would expect)
for non-priority packets! Examination of more extensive

data reveals that 10 of 36 cases exhibit this behavior. In

57

N S P TN g T Ly e




TR TRt

fact in only 16 of 58 cases, including all node types, was
processing delay smaller for both priority and control pack-
ets. The experiments which we have conducted in transmit-
ting simulated speech data from the UCLA PDP 11/45 [Nayl 74)
as well as similar experiments conducted by the University
of Southern California Information Sciences Institute, Mari-
na Del Rey, California (ISI) [Cohe 74] support this obtserva-
tion. 1In those experiments no discernible difference in
delay could be found between priority and non-priority mes-
sages! In a report from Network Analysis Corporation, Glen
Cover New York (NAC) ONAC 75] the authors state that a 40¥
decrease in mean round-trip delay can be achieved by reduc-
ing the processing delay to its original estimate of 1 msec.
Our own projections (which appear in Section 3.3.5) show
that a 44% decrease could be achieved. Therefore processina
delay currently accounts for at least 2/5 of the total de-

Lay, which is quite significant.
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Store-and-Forward Reassembly
Mean SDev Mean SDev
Control Packets
Sample Size ( 3790, 1116) ( 0., 0)
Process ing 3.81 5.22 0.0 0.0
Channel Waiting 2.31 10.40 0.0 N.0
Acknowl edgement 19.11 15.56 0.0 0.0
User Priority Packets
Sample Size « 731, 317) ( 2098, 2066)
Processing 2.57 3.83 3.36 4.69
Channel Waiting 2.69 14 .41 5.87 109.68
Acknowledgement 22.65 15.03 4.36 12.75
User Non-priority Packets
Sample Size ( 1910, 260) ( 567, 468)
Processing 3.18 4.95 8.27 27.69
Channel Waiting 3.88 26.64 12.20 34 .87
Acknowledgement 22.93 16.87 6.12 11.04

Table 3.5(a). Processing delay statistics
(node 22 a 516 IMP, 14 MAR 75)

Store-and-Forward Reassembly
Mean SDev Mean SDev
Control Packets
Sample Size C 1546, 1507) ( 0., 0)
Processing 10.43 10.30 0.0 0.0
Channel Waiting 4 .89 8.80 0.0 0.0
Acknowl edgement 20.73 11.16 0.0 0.6
User Priority Packets
Sample Size ( 575, 57%) ( 11, 1)
Processing 9.63 10.36 14 .82 10.78
Channel Waiting 5.00 8.60 0.36 0.5C
Acknowl edgement 23.12 10.94 3.64 5.43
User Non-priority Packets
Sample Size ( 643, 617) ( 16, 16)
Processing 7.63 9.08 16.38 22.62
Channel Waiting 5.86 12.68 1.56 335
Acknowl edgement 26.22 12.61 s 5.06

Table 3.5(b). Processing delay statistics
(node 27 a 316 IMP, 14 MAR 75)
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Store-and-fForward Reassembly

Mean SDev Mean SDev
Control Packets
Sample Size C 7777, 2738) ( (1 (1)]
Processing 3.75 4.78 0.0 0.0
Channel Waiting 2.72 15.23 0.0 0.0
Acknowl edgement 21.43 13.04 0.0 0.0
User Priority Packets
Sample Size C 1328, 423) ( 4344, 4326)
Processing 2.92 4.12 4.14 4.98
Channel Kkaiting 3.07 22.03 0.34 0.61
Acknowledgement 24.16 14.37 2.506 0.97
User Non-priority Packets
Sample Size ( 4884, 2356) « 613, 611)
Processina 3.42 4.64 4 .81 5.44
Channel waiting 5.01 17.04 0.44 0.97
Acknowledgement 27 .20 13.66 4 .58 25T
Table 3.5(c). Processing delay statistics
(node 22 a 516 IMP, 24 JUL 75)
Store-and-Forward Reassemk ly
Me an Sbev Mean SDhev
Control Packets
Sample Size ( 4317, 4258) ( 0, 0)
Processing 8.12 8.39 0.0 0L
Channel Waiting 3.33 6.63 0.0 0.0
Acknowledgement 19.74 11.33 0.0 0.0
User Priority Packets
Sample Size ( 1543, 1543) ( 4, 4)
Processing 8.47 8.16 3.75 4.86
Channel Waiting 3.56 7a7(9 0.75 0.5C
Acknowledgement 22.24 10.52 2.50 1..€3
User Non-priority Packets
Sample Size « 1737, 1700) ( 3, 3)
Process ing 6.58 7.85 8.33 7.02
Channel Waiting 4.77 8.7 1.00 0.0
Acknowl edgement 23.42 10.22 1.00 c.0

Table 3.5(d). Processing delay statistics
(node 27 a 316 IMP, 24 JUL 75)

The acknowledgement time is larger than one

might ex-

pect. This can have only a second order effect on delay.

If packets are retained lLonger than necessary when buffers

are in short supply then some packets may
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retransmitted. This is not occurringa, for if it were the
effect would be recorded as waiting time since retransmis-

sions change the "sent time"” in the trace block.

3.3 Apnalysis

To pinpoint the cause of the excessive processing delay
we shall wuse a model of the nodal priority structure. A

description of that structure follows.

3.3.1 system descrietion

The IMFs are required to perform a set of functions in
order that the network operate smoothly. Among these func-
tions are: receiving, routing and sending packets; process-
ing routing updates and periodically sending routing updates
to neighbor nodes. A priority level is assigned to each of
the vaerious functions within the IMP. A partial List of the
Levels appears in Table 3.6. A function is activated by an
interrupt mechanism. Only the function associated with the

highest active priority level may occupy the processor at a

given instant.
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Abbreviation Level Meaning, Comments

M21 (highest) O Modem to IMP, Channel input
12m P IMP to Modem, Channel output
I2H 3 IMP to HOST., HOST output

H21 4 HOST to IMP, HOST input

T.0 S Timeout, Periodic functions
TSK 6 Task, Primarily packet routing
BCK (Lowest) 7 Background, Statistics, etc.

Table 3.6. IMP priority levels

The portion of the priority structure in which we are
most 1interested heré is that governing the processing of
routing update packets and other (non-routing) packets.
Under the current scheme, pictured in Figure 3.1(3), all
packets arrive and are treated by the input routire running
at the M1 level which places them, without examination as
to type or priority, on the Task queue. They are then pro-
cessed in first-come-first-served order. when the Task
routine encounters a routing packet it, in effect, switches
priority to level T.0 so as not to be interrupted by any
function of equal or lower priority. (This has the effect
of disallowing the sending of a routing update packet to a
neighbor while the table is in the process of being updat-
ed.) MHon-routing packets are, on the other hand, interrupt-
able by T.0 functions. More detailed descriptions appear in

CCole 711 and in [McQu 721].
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Since, as we see later, routing update packets require

much processing compared with non-routing packets, it seems
appropriate to reorder the priorities and treat routina
update packets in the BCK level and other packets at the TSK
level. Figure 3.1(b) shows the logical structure of such a
system. Notice that the Task queue has two levels of prior-~
ity instead of one as before. Also notice that wunlike the
channel, the Task routine serves the queue by preempting, if
necessary, the (low priority) routing updates. This scheme
is not new. Originally routing packets were treated in the
BCK Level. The chief reason for the current set of priori-
ties coupled with higher frequency updating is to propagate
routing information faster through the Llarger network

CSant 753.

3.3.2 General theory

This system can be modeled by a single server head of
the Lline (HOL) preemptive priority queueing system
Cklei 761]. The solution agiven in [Klei 761 for the mean
time in system for priority class p is valid under the M/G/1
assumption (which we later adopt). There are, however, some
partial results for the G/G/1 case which we may apply here.
Schrage ([Schr 681 proves that the shortest remaining pro-
cessing time first (SRPT) scheduling algorithm is optimal in
that it minimizes the averaae number of jobs in the system.

That is, the number of jobs in a system under the SRPT algo-

rithm 1is Lless than or -equal to the number in the system
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under any other scheduling algorithm for the same seocuence
of jobs. Kleinrock [Klei 76] points out that if the cost of
delaying a customer is constant over all priority classes.,
then the SRPT rule achieves the minimum cost. Hence, the
theoretical results indicate that an arrival should join the
queue behind all those customers in the system with remain-
ing service time which is less than (or equal to) the ser-
vice time required of that arrival, and in front of all oth-
ers in the system. That is all non-routina packets should
preempt, if necessary, the processing of routing packets.,
since as we see below, routing packets require much more
processing than do nbn-routing packets.

Having stated the gengral theoretical result we now
wish to show the order of magnitude of the improvement one
may achieve by causing routing updates to be processed at a

lower priority than other packets.

3.3.3 A mogdel

In the following analysis we wish to examine the tra-
deoff between the existing and the proposed system over the
full range of packet traffic intensity. Some simplifying
assumptions will allow the direct application of the theory.
For simplicity, we shall lump all high priority functions
into the M21 priority class. We consider two such high
priority functions - (a) modem input and (b) modem output’
and ignore all others. We shall overestimate the time wused

in these functions which will tend to give a lower bound on
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performance (i.e.» a pessimistic value). We assume that the
arrival of customers to each class is independent of the
arrivals to the other classes and may be modeled by 2 Pois-
son process. The Poisson assumption on the arrival of pack-
ets is equivalent to assuming that we have a large numter of
input channels collectively sending at the same rate as the
actual number of channels. Wwe further assume that each
queue has no restriction as to its length (i.e., infinite
nodal storage) and that the overhead for changing ,tasks is
negligible. The current system then, may be modeled by a
two level preemptive resume HOL priority queueing system and
the proposed system by a three Level system. These systems
are pictured in Figure 3.2. 1In each system the input/output
function has preemptive priority over the other class(es).
The three level system (in part (b) of the figure) divides
the Task queue arrivals into routing updates and non-routing
packets, the latter having preemptive priority over the

former.
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ARRIVALS

TASK INPUT/
PROCESSING OUTPUT
% OPERATIONS
DEPARTURES
Figure 3.2. (a) The two level model.
ARRIVALS
ROUTING NON-ROUTING INPUT/
UPDATE PACKETS OUTPUT
PROCESSING TASK PROCESSING OPERATIONS
DEPARTURES 4

Figure 3.2. (b) The three level model.




3.3.4 Apalytic resuylts
The general solution from [Klei 76) for the average

time in system for a customer of the pth class is

b °)

x(p)[1-s(p)] + r(jd)x2()/2
i=p
T(p,P) = (3.1)
C1-s(p)ILi-s(p+1)]

where P 1is the number of classes (1 is the lowest priority
class and P is the highest), x(p) is the mean service time
for a customer in <class p, x2(p) is the second moment of
service time for a customer in class pr r(j) dis the 1input
rate of customers of <class j,» and s(p) is the cumulative
utilization due to classes of priority p and higher (where
the wutilization for <class j is x(jI)r(j)). Let x(i) = the
service time for the M2I classs, x(u) = the service time for
routing update processing, x(n) = the service time for non-
routing packets, r(u) = the arrival rate of routing update
packets, and r(n) = the arrival rate of non-routing packets.
For the purpose of further simplifying the model we shall
assume that the service time in each class is fixed. In
particular, this means that the second moment 1is equal to
twice the mean. Ve assume that each packet processed by the
Task routine arrives and eventually leaves via the M2I Level
(since each packet processed by the Task routine must arrive
via the input routine and exit via the output routine in our
model). we also assume that the number of routing update

packets received by a node is equal to the numbher sent. We
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therefore assume (an independent arrival process with) an

arrival rate of 2Cr(u)+r(n)]) to the M?2I class. From equa-

tion 3.1 we have

x(u)rCud)+x(n)r(n)
T(1,2) =

CrCu)+r(n)JC1-2xCi)CrCu)+r(n)l]

pa 2 2
[x (WrCuw+x (nNdr(n)1/2 + CrCud+rCn)lIx (i)
+

C1=-x(W ru)=-x(nN)r(n)=-2xCid)CrCu)+r(n)1JC1-2x(i)Cr(u)+r(n) 1]

(3.2)

Equation 3.2 aives the average time in system for routing
and non-routing packets in the two level system. The solu-
tion to the three level system is

x(u)
7¢(1,3) =

1=x(N)r(n)=2xC(i)Cr(u)+r(n)]

2 2 P4
rCudx (ud/2 + r(n)x (n)/2 + CrCw)+r(n)lx (i)

1=x(n)r(n)=2x(i)CrCu)+r(n)]

T=x(Wr(w=x(n)r(n)=2x(i)Lr(ud+r(n)l

(3.3)

x(n)
T(2,3) =

1=2x(i)lrCu)+r(n)]

2 ?
réndx (n)/2 + CrCud+r(n)lx (i)
+

C1=-x(n) r(n)=2x (D CrCuw)+r(n)JI01=2xCi)Cr(u)+r(n) 1]

(3.4)
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Since both systems are preemptiver, there is no difference
between T(2,2) and T(3,3). Therefore we need only concern
oursetves with T(1,2), T(2,3) and T(1,3). T(1,2) - T(2,3)
gives the reduction in delay for non-routing packets when
changing from the two level system to the three level sys-
tem. T(1,3) =~ T(1,2) gives the increase for routing update
processina for the same change. Comparison of the two sys-
tems depends on the relative vatues of x(u), x(n), r(u) and
r(n) which we shall now estimate in order to present some

numerical results.

3.3.5 Numerical results

we estimate that no more than 300 machine <cycles are
required to process an incoming packet or an outcoing pack-
et. we further assume that a maximum of 300 cycles are
required to do the TSK level processing of a non-routina
packet. These values are purposely larger than the estimate
in ([kcau 723. This is in order to exaggerate their effect
in the model and therefore provide a pessimistic projection
of performance (as mentioned earlier). Routing packets
require much more time to digest. In a recent experiment
carried out BBN [BBN 75] with a 316 IMP, it was found that
18% of the HOST throughput was lost when going from zero to
one 50kbps L(ine. A similar loss was noted with each addi-
tional line. Assuming that the processor was fully utilized

durina the experiment, this indicates that routing and other




processes associated with IMP-to-IMP Llines require 14400
cycles/routing update period. The time could be signifi-
cantly reduced by implementing the "local Loop” prevention
aloorithm outlined in ([Nayl 75)] and chapter 2. That is.,
many (one third on the average for 3-connected neighbors) of
the routing update entries are skipped since they point
toward the updating node. We estimate those oprocesses in-
volved in handling one Lline (with no data traffic) as fol-

lows:

Function ' Cycles/update period

Receive routing messaae

Input (140 on 316) 280

M2l 300

TSK 300

Receive and process IHY 100
Send routing packet 300
T.0 300

12m 300

Output (140 on 316) 280

Process routing packet 12000
Other 540
Total 14400

Table 3.7 Channel function processing time estimates

de shall use for x(u) a value of 12000, which is a con-
servative estimate to minimize the effect of routing. This
conflicts with the pessimistic estimates of input, output
and non-routing packet processing and would tend to give an
optimistic value of performance (i.e.» lower than actual
delay). However, it does result in a lLower bound (or pes-

simistic estimate) for the improvement in performance
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between the two systems. The service time of the various
tasks is a function of the processor speed. In August 1976
there were four processor types in the ARPANET -- the 516
iMP, 316 IMP, 316 TIP, and Pluribus [Hear 7¢] 1IMP according
to CNIC 763. We shall consider only the first three which
have speeds of .96, 1.6 and 2.2 usec/cycle respectively
CMcQu 73]. The rate of arrival of routing packets to a8 node
is governed both by the number of connected channels, and
the utilization of those channels as mentioned in chapter 2.
The three nodal types were distributed with connectivity
CNIC 76] as shown in Table 3.8. Also shown in Table 3.8 s
the predicted "zero-load" average waiting time expressed in
milliseconds for each case (i.e., the waiting time when r(n)
= 0). Each pair in the table consists of the number of
nodes in the network with this connectivity followed by the
zero load delay prediction. At that time there was one

five-connected Pluribus IMP in the network.

Connectivity 516 316 TIP
1 0, .63 2, 1.87 3, 3.79
2 5, 1.40 9, 4.57 12, 10.3%
3 11, 2.36 S, 8.83 9, 24.93
4 1, 3.61 1, 16.66 Jr, R6.17

Table 3.8 Connectivity of processor types

The zero load average waiting time for non-routino packets
in the three level system is essentially zero. The range is

from .000645 to .0130 msec. Comparing these values with
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those in Table 3.8 we see the dramatic effect of this change
in priorities. The zero load average waiting time for non-
routing packets in the two level system is from apbout 1000
to 6000 times what it is in the three level system!

The behavior of these systems over the complete range
of channel utilization (where packets of 300 bits average
Length occupy the channels) is shown in Figure 3.3 parts (a)
through (f). Also shown in the figure are measured data
points (as squares) where such data exists. We show only
the results for the two and three connected nodes (those
which are most prevalent in the ARPANET). Each part of Fig-
ure 3.3 consists of three curves. The curve which Llies
between the two others shows the performance of the two lev-
el system and the other two show the three Level system's
performance. Average waiting time for routing and non-
routing packets is shown in the highest and lowest curves
respectively. The gain in delay for non-routing packets is
the difference between the middle and the lowest curve. The
cost in delay for routing 1is the difference between the
highest and the middle curve. For parts (a) and (bt) the
bottom curve 1is almost dindistinguishable from the axis
(i.e.» nearly zero waiting time through the entire range).
Notice 1in parts (b) and (d) that the model is a good lower
bound to the measured results. Since we overestimatec the
high Llevel processing time, an upper bound was expected.
The fact that a lower bound was achieved is most likely due

to the underestimation of x(u).
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Substituting the two lLevel system model for the con-
stant processing delay term i~ the [(Klei 74) model causes
the predicted delay to increase to 165 msec for March 1977.
This is an increase of 126X (i.e., from 73 to 165 msec) over
the August 1973 value of predicted delay. Recall that the
actual increase in delay was 145% (i.e., form 93 to 22%
msec). A better (i.e., Llarger) estimate for x(u) would
drive this prediction closer to the actual delay. Assuming
that the ratio of predicted delay to actual (measured) delay
remains fixed (i.e., 73/93), then the projected mean round-
trip delay for March 1977 would be approximately 129 msec if
routing updstes were processed at Llow priority. This
represents a 44X reduction in delay!

It is <clear from these results that a substantial
reduction in nodal processing delay would result from reord-
ering the priorities within the system. B8ut this is a local
optimization which may eventually lead to worse overall per-
formance in a network-wide sense. B8ecause the speed of the
processing of routing information is substantially reduced
by the reordering, it may happén that routing information
will not be propagated as quickly as needed. Looking at the
three-connected TIP for example, we see that routin¢ pro-
cessing incurs infinite delay at about .6 channel wutiliza-
tion. To determine whether this local optimization leads to
a global optimum or leads instead to disaster, let us exam-

ine the simulation results in the next section.
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3.4 simulation results

A simulation was performed under the same conditions as
described in chapter 2. The local loop free algorithm was
modified to perform routing processing at low priority.
This new algorithm (LLFLR) was used in the simulation. The
result 1is compared 1in Figure 3.4 to the LLFR algorithm of
chapter 2. The figure shows the network-wide mean delay as
a function of offered Load. It appears that the Local op-
timization in this case lLeads to a global optimum, since
LLFLR out performs LLFR at each load. One would therefore
expect that if low priority routing update processing were
done 1in the ARPANET, then the mean round-trip delay woul”
fall much closer to the predicted (rather than the measuréd)
values 1in Table 3.1 for May 1974 and August 1977, as indi-

cated in the last section. This would reduce the mean delay

to be within the specification of 200 msec.
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Figure 3.4. High and low priority routing (simulation).
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3.5 Conclusions

There are two important general Lessons to be learned
here. (1) In order to provide different levels of service
to different classes of customers., dne must be careful to
provide that order of service at each step of the process-
ing. Ffor example, if one wishes to guarantee that priority
packets traverse the network more quickly, on the average.,
than do non-priority packets, then priority packets must bhe
serviced with priority from all queues in which they may
wait (i.e., the Task queue as well 3as the channel queue, in
this case). (¢) Examination of the worst case phenomenon
should not be used alone in arriving at decisions regarding
priority of service. Rather one should evaluate the impli-
cation of those decisions over the entire range of system
operation.

Wwe have concentrated in this chapter on a small (but
important) part of the priority structure within the ARPANET
nodes. There are other areas within the system priority
structure which may bear fruit in terms of reducing delay or
increasing throughput. There is a oriority structure with
which the <channels are accessed as well, which provides
another area for inveétigation.

In this chapter a high degree of overhead due to the
ARPANET routing update procedure was exposed. The next
chapter concentrates on the issue of overhead in periodic

adaptive routing in lLarge networks.
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CHAPTER 4

ON THE EFFECT OF PERIODIC UPDATE ROUTING PROCEDURES

4.1 Introduction

In a packet switched network, some form of adaptive
routing procedure is desirable so that packets may be routed
around Line and node failures and possibly around congestion
in the network and to allow the network to adjust to dras-
tics changes in input traffic matrix. It is <clear that
there must be some overhead associated with any form of
adaptive routing (i.e.,» the channel time and processor time
required to generater, transmit, and process the routing
information). Clearly, one would hope that the <cost for
such adaptive routing does not exceed the benefits derived
therefrom. Since adaptive routing s considered to be
necessary 1in practice, its overhead has received only par-
tial considersation by most authors (Cegr 7?51, (Fult 721,
CMcCo 751, ([McQu 743, CPick 76]. 1In this chapter, we study
some unusual phenomena caused by the interference of routing
updates. Specifically, we <consider the cost (in terms of
message delay) of the current ARPANET routing update pro-
cedure. we begin by presenting some results of a set of
measurement experiments which prompted an analysis of the

- ——— - ——— - — - - - - - - ———— -~ - - - - - — - -

* This chapter is a revised version of [Nayl 761].
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effects of the routing procedure on message delay. A sim-
plified model of the system is then discussed and analyzed
exactly. This exact solution is a bit unwieldy for highly
detailed models in which case we resort to simulation to
show the performance and to demonstrate the effect of mcdi-
fied routing schemes. The simulation results indicate a
rather high cost associated with the use of periodic routing
updates in networks the size of the ARPANET. This suggests
the use ¢ "passive" routing scheme with catastrophe-

triggere

4.2 Measurement

We set out to determine by what means and how accurate-
Ly one could predict round-trip network delay for a stream
of messages with fixed interarrival times based on previous
delay samples in the ARPANET. This traffic pattern is exhi-
bited by fixed data rate sources such as speech (fora 75al.
These measurement experiments were conducted with no inten-
tion of considering the effects of the nperinodic wupdate
scheme wused in the ARPANET. We observed a much lower than
expected correlation between successive delays (see Chapter
5). In experiments sending data as fast as possible, suc-
cessive delays display hiagher correlation [(Klei 753l than do
those for a fixed inter;rrival time source. A closer Llook

(suggested by ©0. Cohen of the Information Sciences
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Institute, University of Southern California) revealed some
interesting phenomena regarding the effect of periodic rout-
ing update procedures.

The experiments took place on Friday evening December
12, 1975, between the hours of 9 and 11 p.m. PST. (A light
network Load and therefore nearly constant delay was expect-
ed during this time period.) Full single-packet messages
were sent from the UCLA PDP 11/45 to a "discard fake HOST"
(a portion of the ARPANET IMP software which mimics a "real
HOST" acting as a sink for a message stream, see L[BBN 691)
over (minimum hop path) distances of 1, 2, S and 10 hops at
fixed interdeparture times of 124, 165, and 248 msec. The
round-trip delay (i.e., the delay from the time tke message
is ready to be sent until the end-to~end acknowledgement --
RFNM -- is returned) was measured by the PDP 11/45 and
recorded for subsequent study.

Figures 4.1 through 4.4 show some of the round-trip
delay measurements plotted against message sequence number
(i.e., time), Here we show network delay as a function of
(message arrival) time. These particular samples are
representative of the collection of experiments.

Notice the unusual increases in delay at regular inter-
vals (of about 30 messages) in Figure 4.1. In each interval
there is a group of three dominant peaks separated by two
regularly spaced points where the delay is near the minimum.
Notice also the regular decrease ig the first peak 1in each

aroup with time until it is replaced with a full sized peak
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at intervals of five groups. This curve 1is in fact =&
pe;iodic function (with some "noise" due to the "other"
backgrouno data traffic) with a period of about 150 mes-
sages! (Cur model 1in a later section and the correlation
results in Chapter 5 show that the period is actually 160.)

This periodic behavior 1is Lless noticeable at longer
network distances. There is a pattern of climhina to 2
local maximum and suddenly dropping and starting the climb
again in Figures 4.2 and 4.3. Generally speaking increases
in delay are gradual while decreases are immediate (though
the opposite condition occasionally occurs as well). The
curve shown in Figure 4.4 varies quite severely. There is a
pattern however, and very close examination reveals a
periodic function (again with some noise) with a period of
approximately 130 messages. Plots of other samples show
that the shape of the curves is more related to the data
rate than to network distance.

One would not normally expect to see such a regular
variation in delay with time assuming no control on the oth-
er network traffic. Rather one might expect to see a random
function of time, possibly with a slowly varyinag average
which changes with network Load [Cohe 74]. (Indeed, the
Latter was our hope; we were looking for delay predictors.)
Below we present an analysis of the regularity of these

delay functions.
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4.3 Apalysis

zefore proceeding with the analysis, we must first
descriLe the 1important features of the periodic routino

update scheme in the ARPANET.

4.3.1 ARPANET periodic routing scheme descrietion

There exists a basic routing interval of 640 msec. The
beginning time for the basic period is chosen essentially at
random for each half-duplex channel in the network. It was
noted, by BBN, that as the network grew in size, routing
information was not being propagated 1in a timely fashion
with only one update per basic period [BBEN 74]. Therefore
provision was made to send up to five updates in one basic
period. Dburing a basic period the line utilization (includ-
ing that for updates) is measured to determine the numbter of
updates to be sent during the next basic period. For each
additional 20X of line utilization, one of the five possible
updates 1is dropped. For example, at 65% Line utilization
only two updates are sent in the next basic period. It is
important to note that the updates are not necessarily even-
ly spaced within the basic period. Kather this period is
divided into five equal segments. Routing updates are sent
only at segment boundaries (i.e., every 128 msec). For the
20 to 40X range, for example, updates are sent at C, 128,
384, and 512 msec into the basic period (rather than 0, 160,
320, 480 msec for evenly spaced updates). Routing update

packets were 1160 bits in tength, requiring 23.2 msec to
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transmit on the 50 kbps channels used in the ARPANET (recent
changes have increased this somewhat). Additionally, ap-
proximately 12000 machine cycles (based on a measurement
reported in [BBN 751, see Chapter 3) are required to digest
an 1incoming routing update (i.e., 11.52 msec for a 516 IMP
and 19.2 msec for a 216 IMP). Chapter 3 examines the impor-

tance of this overhead within the nodes.

4.3.2 A simple model

Cur analysis ‘uses a queueing system with some "back-
around” traffic (i.e., routing and ambient data traffic) to
which we add a stream of deterministically generated traf-
fic. The inclusion of the ambient data traffic is to model
the interference caused by other packet source§ in the sys-
tem. We wish to study the system time of this added stream
traffic (i.e., the round-trip delay as shown in Figures 4.1
through 4.4). We first examine the waiting time on 2 single
channel. The model for the single channel is pictured in
Figure 4.5. There are three classes of customers arriving

to a single qQqueue; routing update packets (R), ambient data
Ri
A— =i

s: e

Figure 4.5. Single channel model.
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packets (A), and stream packets (S). ALL arrivals are
served in first-come-first-served (FCFS) fashion (thouah in
the actual system, routing update packets take precedence
over both priority data packets and control packets, all of
which take precedence over non-priority data packets; see
Chapter 3). The effect of this is negligihle for our pur-
pose here as we show later.

Let w(t) represent the waiting time for a stream traf-
fic packet arriving at time t. Suppose U(t) is the amount
of work of type R and A remaining in the system at time t.
As Llong as the stream arrivals have no priority over other
customers, an arrival must wait until all work in the system
has been completed before receiving any service of its own.
The amount of work in the system found by an arrival at time

t is at least U(t). Hence

w(t) > u(e)

Equality 1is achieved for an arrival when it is the first
stream traffic arrival in a busy period (i.e., a period of
continuous activity by the server).

For simplicity of the following analysis, we assume
that the ambient data traffic has zero intensity. U(t) for
a system void of any data traffic is shown in Figure &4.6.
At the arrival time of a routina update packet, the amount
of work in the system jumps up by 23.2 msec (the service

time of a routing update packet). With no other packets in




the system, the routing update packet is immediately served
at a rate of one second per second, and exits the channel
after 23.2 msec. After the departure there is nc work in
the system until the next arrival.

A more interesting measure of performance is w(sn), the
waiting time for the nth message, where the constant in-
terarrival time of the stream traffic is s. Figure 4.7 is a
plot of U(sn) for s = 248, 165, and 124 msec (i.e., the
periods used in the measurement experiments). For these
vatues of s <(and the message size used in the measurement
experiments) the Line utilization is in the 20 to 40% range
so that every fifth update is dropped. These sinale channel
curves nicely display some of the characteristics of delay
shown in Figures 4.1 through 4.4. The major shape of Figure
4.1 is nearly the same as U(124n). U(165n) and U(248n)
display the relative variation of the previous corresponding
figures. That is U(165n) varies more rapidly than does
U(248n) which in turn varies more rapidly than U(124n)’ and
correspondinoly Figure 4.4 varies more rapidly than do Fig-
ures 4.2 and 4.3 which in turn vary more rapidly than Figure
4.17. One can clearly identify the period of each U(sn)

curve. Indeed, let P(s) represent the perijod of U(sn).
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Then

P(s) LCM(s,r)/s

where LCM(x,y)

the least common multiple of x and y, and r
= the routing period (i.e., the minimum time r such that the
pattern of routing arrivals 1is the same in the intervals
(Crrds Crs2rd)e 2rs3e)e ...)e For these examples, r=640
msec. P(s) has the values 80, 128, 160 for s = 242, 165,
and 124 respectively.

Figure 4.8 shows the detailed precession of the periods
of the routing and stream traffic. Each row in Figure &4.%
shows one period of the stream data. The relative positions
of the data (S) packets and the routing (R) packets within
the period are shown. Notice that every fifth routing up-
date packet is missing. The figure makes clear the fact
that the priority which routing update packets carry has no
effect (in the absence of ambient data traffic). That 1ise.
data packets are delayed (by routing upcdate packets) only
when they arrive while the channel is busy servina a routino
ubdate packet. Since preemption 1is not permitted on the
channels, occasionally a routing update packet must wait for
a data packet to complete service on the channel before

being transmitted.




STREAM TRAFFIC PERIOD (248 msec)

Figure 4.8(a). Precession of interference pattern (s=248).
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Figure 4.8(c). Precession of interference pattern (s=124).
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Figure 4.9. Two tandem channel interference pattern example (s=124).
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when packets pass through more than one tandem channel.,

a more complicated pattern arises. An example pattern for a
system of two tandem channels is shown in Figure &4.9. Once
the packets are delayed at chanﬁel 1, their arrival rate at
channel 2 then corresponds to that of the routing update
packets. Ouring this time we have two deterministic streams
arriving at a constant offset. Hence the waiting time at
channel 2 remains constant (except for routing drop outs)
until the data packets are no lonjyer delayed at channel 1.
This example illustrates the climbina-dropping phenomenon
shown in Figures 4.2 and 4.3,

An exact solution of the n-node tandem server model is
highly dependent on the phasing of the routing updates on
the various channels, as seen in Figure 4.9. This dependen-
cy produces an unwieldy solution. Therefore, in the next
section, we use simulation to study a model which s more

closely tied to the actual system.

4.4 simylation

Having shown the exact behavior for the single channel
system, we noW resort to simulation to illustrate some
phenomena present 1in the more complicated tandem system.
Essentially identical experiments, as described in the above
measurement section, were performed using a rather detailed
simulation of the ARPANET. The simulation program was writ-
ten in PL/I for the IBM 360/91 at UCLA. There were three

main differences between the measurement and simulation. In
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the simulation, the ambient data traffic was set to zero.,
node-to-node acknowledgements were not used, and the phasing
of the routing update packets on the various channels was
not synchronized with that of the measurement experiments.
Therefore, we expect to see the same period displayed but
possibly a different shape for the delay curves. Indeed
Figures 4.1 and 4.10 show a curve with a2 period of 32C mes-
sages. Notice that the period differs from that of U(sn)
for this data rate. This is due to the fact that while the
data rate causes a stablé rate of four routing updates per
basic period, the return path carrying RFNM's alternates
between four and five updates per basic period. This
results 1in a stable rate of nine updates in eack two basic
periods. That is, 1280 is the minimum time r for which the
pattern of routing arrivals is fixed in the intervals (O,r).,
(rs2r)s (2rs3r)sac. . Thgrefore, the round-trip delay curve
has a period of LCM(124,1280)/124 = 320 messages. Figure
4.1 may exhibit a period of 160 messages due to the node-
td-node acknowledgements which elevate the traffic on the
backward channel just enough to force a constant rate of
four updates per basic period. One also notices that the
minimum values for Figures 4.1 and 4.10 are not the same.
This 1is due to several factors. 1In the simulation we have
estimated the channel propagation time and the nodal pro-
cessing time; both are likely lower than their actual value.
Another factor is that we have assumed zero acceptance time

for the message at the destination node and for the RFNM at
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the source node. These assumptions drive the delay down for
the simulation and hence lowers the vertical offset.

Figures 4.2 and 4.3 are too random to identify a
period. However, one should notice the slow climbing and
rapid falling in the curves in Figures 4.2, 4.3, 4.11 and
4.12 (though the measured data 1is quite noisy). The most
rapid variation, btoth for simulation and measurement, is the
packet rate of approximately six per second shown in Figures
4.13 and 4.4 respectively. Both curves possess a period of
128 messages.

Nestled between the large delays in Figures 4.1 and
4.10 are some small mounds. These are due to the interfer-
ence between routing updates and stream traffic 1in the
"TASK" queue [McQu 721 (i.e., data packets waiting to be
placed on an output queue and routing update packets waitina
and being digested into the local routing table). The TASK
queue is currently served in FCFS fashion. A conceptually
simple modification 1is to serve routing update packets at
Lﬁu priority from the TASK queue. (This is discussed at
tength in Chapter 3.) Fioures 4.14 through 4.17 show the
effect of sending routing updates at the same rate as be-
fore, but processing data packets by preempting the prccess-
ing of interfering routing updates. Notice the decrease in
both the average and varjance of delay. These curves show
the best possible delay under the current periodic update
scheme, assuming preemption is not allowed on the channels

as well.
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Figure 4.10. Round-trip delay simulation (1 hop, s=124).
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Figure 4.11. Round-trip delay simulation (10 hops, s=248).
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Figure 4.13. Round-trip delay simulation (2 hops, s=165).




ROUND-TRIP DELAY (mesc)

ROUND-TRIP DELAY (mesc)

200
7
150
125
100
s
"L
»
% 80 10 150 20 30 300 30 40 40 1500 550 600 650 700 750 %0 80 90 960 1000
MESSAGE NUMBER
Figure 4.14. Round-trip delay simulation with low priority routing processing (1 hop, s=124).
800
700
00
800
“UAANAMAAMNWMAMN AW A
300
200
100
% % 100 180 200 250 300 380 400 480 60 630 600 850 700 750 800 850 900 960 1000

Figure 4.15. Round-trip delay simulation with low priority routing processing (10 hops, s=248).

-




TR o

g 8 B 8 8 8

ROUND-TRIP DELAY (msec)

8

0“1@1““”””@“@““”“7&““””1&

(-

Figure 4.16. Round-trip delay simulation with low priority routing processing (5 hops, s=248).

g

3

-

8

-

ROUNO-TRIP DELAY (mesc)

g 3

-]

O 50 100 150 200 260 300 360 400 460 600 660 €00 €S0 700 780 8O0 880 900 960 1000
MESSAGE NUMSER

Figure 4.17. Round-trip delay simulation with low priority routing processing (2 hops, s=165).
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for sending stream traffic in an otherwise empty net-
work, the processing of routing updates at (ow priority pro-
vides superior performance to the current FCFS approach.
There may be some guestion whether this superiority would
remain in a loaded network. As the traffic increases, the
routing updates remain on the TASK gueue for a Longer time
tnus causing a possible Llag in the propagation of recent
routing information. Eventually, one might expect that Lag
would result in worse routes being used, and correspondinaly
increased delays. This possibility must be compared acainst
the added delay to data traffic in the FCFS case. Analysis
of a single node in isolation as well as the results of a2
simutation of a network appear in Chapter 3, with the con-
clusion that routing update processing at (ow priority is
good both locally and globally.

Cne may go one step further and consider the perform-
ance of a system where routing update packets may be
preempted from service on the channels as well. This "total
background” routing may be difficult to implement in prac-
tice. The next step, if we danore rctwork component
failures for the moment, is to eliminate routing uprdates and
to use some form of fixed routing. As with total backcround
routina, this causes no interference of data packets cdue to
routing information processing. One wonders if fixed rout-
ing will be less effective since it cannot adapt to chanaing
traffic patterns (i.e.» at very Llow traffic Llevels fixed

routina performs better than adaptive schemes, but perhaps
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may fail at higher traffic levels). However, we do recall
from (Klei 64] that properly designed fixed routing pro-
cedures may be superior to adaptive ones. This 1is further
supported by [(Pric 72]. Figure 4.1R also stows the relative
performance of a fixed scheme (FR) and the two others (HDR
and LLFLR as described in Chapters 2 and 3). 7Yo give per-
spective here, we note that a relative traffic Load of 1.0
is slightly higher than the weekly average traffic level
reported in [Klei 74]1. We note also that with a high degree
of confidence, the values for mean delay are correct to
within +7% for the first three levels of relative traffic
intensity (i.e., 1.0, 5.0, and 10.0). The values above
intensity 10.0 are less precise, but the only gqguesticnable
points are for LLFLR and FR at load 14. The range of values
for LLFLR and FR overlapped in the several simulations for
this intensity. The fixed routes used were the shortest hop
paths. One could choose an even better fixed routing scheme
by wusing the flow deviation method [Gerl 73] fcr exemple.
Notice that fixed routing always performed better than the
foreground routing (HDR)., and only at very high traffic lev-
els is it worse than the background processing routing
(LLFLR). This suggests that the cost of routing in the
ARPANET is extremely h%gh indeed, since traffic Ltevels are

currently very low.
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Wwe have so far ignored network failures. It is clear
that failures do occur in practice. Long term monitoring of
the ARPANEY [McKe 741 shows a mean time between failures
(MTBF) of 431 hours for Llines and 221 hours for nodes.
Failures cause topological changes to occur in the network
in the following two ways. When a channel fails, it 1is as
if it were removed from the network. When a node fails, all
its attached channels are removed from the network. We
define the network-wide MTBF to be the mean time between
channel removals. Then with the 57 nodes and 65 full duplex
channels, in the June 1975 ARPANET, and assumina that each
node is of average connectivity (i.e., approximately 2.24
CBBN 751), these figures yield a network-wide MTBF of 3.76
hours.

AR far better method of routing, it appears, would be to
use a "passive" scheme. In such a scheme one establishes
rcutes and continues to use them in a fixed routing fashion
until some catastrophe occurs (i.e., a failure or possibly
even severe congestion). At the time a catastrophe occurs
one could "turn on" routing updates until the tables “sta-
bilize". fFrom the above data one can see that the average
time between turning on routing due to failure would be
almost two hours (or approximately 10000 times the basic
routing period)!

Recently a technique called "explicit path routing” was
introduced by Jueneman and Kerr [(Juen 76]. This scheme pro-

vides for a set of fixed paths between any node pair and

111




=

e, e e

requires no updating of routing tables. This procedure

deserves further investigation in light of our results.

4.5 Copclusions

In this chapter we have shown some interesting message
delay phenomena for periodic stream traffic attributable to
the periodic routing scheme used in the ARPANET. e con-
clude that periodic routing is quite costly in medium sized
(and bigger) networks. In order to assure good rerformance
in the face of failure (or heavy congestion) one pays a2 high
price 1in terms of message delay for periodic routing update
procedures in networks of the size of the ARPANET. We sug-
gest the use of a passive routing scheme, in which updates
are scheduled (only) as the result of failure (or heavy
congestion). The results presented here suggest that this

method could provide superior performance at reduced cost.




i

CHAPTER 5
(SCURCE AND) DESTINATION BUFFERING CONSIDERATIONS

FOR STREAM TRAFFIC COMMUNICATION

5.1 Introduction

In communicating stream information via a packet
switched network rather than the traditional <c¢ircuit
switched (or dedicated) network there arise some unique
problems which require solution. Among these problems is
the packaging of information into packets. Some ad hoc
solutions to this problem are discussed in section 5.2. But
the chief concern of this chapter is dealing with the vari-
able delay 1imposed by a packet switched network. Several
methods of Limiting this variability in the output by cdesti-
nation buffering are considered. B8y delaying the output of
the first message of a stream, one may Llimit the frequency
and duration of gaps in the output (i.e., intervals of time
in which no data is available to output). Such gaps are
undesirable since, to some extent, they destroy the rhythm
of the output and thus hinder the intelligibility of the
information. Clearly, as the first message delay is in-
creased, the frequency and duration of gaps decreases. in
the Limiting case of infinite destination buffering delay it
is guaranteed that zero gaps will occur in the output but

this of <course destroys the interactive nature of the
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communication. Therein Lies the tradeoff which is examined
in this chapter, namely gaps versus delay.

By assuming statistical independence of the delay ex-
perienced by stream packets traversing the network, we may
analyze this tradeoff. The assumption 1is somewhat justi-
fied, but fails to be true under certain conditions, which
we partially examine. B8ased on this independence assumption
we can derive some general analytic results. Numerical
results are presented for the exponential distribution in
some detail and to a lLesser extent for a class of r-stage
Erlangian distribution of delay. Following the theoretical
performance results, we present some results of a simulation
which allows for the relaxation of some of the assumptions
of the model. This is accomplished with the use of a trace

driven simulation of the various buffering methods.

5.2 gendipg strategy

dhenever stream information is produced by the source
in units which are smaller than a full packet (or message)
we have the option of sending the information in partially
full packets. Doing so reduces the time required to create
3 packet, but increases the throughput requirement of the
source since packets contain a non-zero amount of overhead.
Once again, one finds a tradeoff between throughput and
delay!

This tradeoff is pictured in Figure 5.1 for the fixed

rate ARPANET LPC algorithm (see U[(Cohe 76]). There is a
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Linear increase in packet fill time as we move from the
minimum of one parcel to the maximum of 14 parcels per pack-
et. (A parcel consisting of 67 bits contains one set of LPC
coefficients and as such is the smallest unit which may be
separately interpreted at the destination.) Tke slogpe is
19.2 msec/parcel. It is clear that an inverse relationship
holds for the throughput in terms of either packets/sec or
bits/sec as shown. If the network protocol uses a full
packet time to send a partially full packet (e.g., a slotted
channel as in the ARPA SATNET ([Klei 73] and PRNET
[Kahn 75]), then the bits/sec curve is of no use.

Two extreme approaches exist for a sendino strategy:
(1) minimize delay (at whatever the resulting throughput
requirement), and (2) minimize the throughput requirement
(at whatever the resulting delay). It is <clear that the
choice of sending full packets satisfies (2). However, it
is not so clear that sending the smallest packets minimizes
the overall delay.

Let f(p), x(p), c(p)» wlp), and D(p) be defined as fol-
lows for the stream packets given that packets of size p
parcels are in use.

f(p) = the fill time.,

x(p) = the network transmission time.,

n

c(p) the network propagation and processina time.,

wip) the average network waiting time, and

D(p) = the average destination buffering time.
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Wwe wish to minimize

f(p) + x(p) + c(p) + w(p) + 0(p) (5e)

over the choice of p between 1 and 14. While t(p) and x(p)
increase with p, w(p) and D(p) decrease as p increases.
Since channel utilization decreases as p increases we expect
the average waiting time to decrease. This in turn causes a
decrease in the variation of delay and therefore M(p) may be
decreased to give the same gap probability (see section
Sad). Also, far the same (packet) gap probability, as the
number of packets increases (as p decreases) more parcels
are effected by gapss, and thus D must be increased to pro-
vide equal intelligibility. Therefore is is difficult to
find that p which minimizes overall delay.

Getween these two extreme sending policies there are
many alternative approaches (e.a., (a) minimize delay at
"reasonable" throughput requirement). Beyond p=5 the
throuahput curves are relatively flat (i.e.. the throughput
requirement does not change significantly between p=5 and
p=14). Therefore a choice of p=5, 6, or 7 seems to fit

approach (a).

Yariable packet size

One would Like to go a step further in minimizing eaua-
tion 5.1, and wuse packets of variable size. For example,
one may wish to use smaller packets when w is likely to be

Large thus reducing f and x, and conversely send larger
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packets when w is likely to be small enough to guarantee
that overall delay will not exceed a tolerable Level.

An examination of this approach has shown that on a
microscopic scale (i.e., packet by packet) it is infeasible
since it was found that future delay is not well predicted
by past delay in general. The correlation results presented
in section 5.3.3.2 attest to this. Therefore durino the
short term it is wise to use fixed p.

On a macroscopic scale some adjustment of p may prove
useful. This may be accomplished by using the destination
monitoring techniques discussed in section 5.3. As network
delay 1increases one may wish to use smaller p. This may be
done only when w is not significantly increased by this
decrease 1in p. If network delay increases quite substan-
tially then an increase in p is in order (to reduce w).

we have offered here only ad hoc suggestions for the
sending process. 'with a good model for w(p) some wuseful
analytic results would be attainable. B8ut since, as pointed
out earlier, the throughput requirement curves are fairly
flat past p=5, the payoff gained by such analysis is likely
to be minimal. we shall therefore direct our attention to

the receiving process.

5.3 Adapiive receiving
The aim of adaptive receiving of stream traffic is to
output the information with as close to the same timina with

which it was originally generated under the corstraint of
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allowing interactive communication (i.e., reasonably small
delay). It is particularly important in the case of speech
to reduce the frequency and duration of gaps 1in order to
insure acceptable intelligibility. In this section we first
describe three methods of g;p control using buffering, and
two playback strategies for handling those aaps which slip
through the control procedures. The performance of the
various schemes 1is then analyzed. We then present some
numerical results for the theoretical performance, followed

by simulation results comparing the various procedures.

5.3.1 Gap control

Since variable delays do occur in a packet switched
network, if no smoothing were done, gaps would occur in the
output of a packet stream. That is, there would be periods
of time in which no data was available for playout. This
has disastrous effects on the understandability of speech in
particular and in general violates the definition of stream
traffic. Therefore gap prevention or reduction is neces-
sary.

One method of gap control is to delay the output of the
beginning of a sentence (i.e., a perjod of activity by the
sender) by an amount D, which may be selected at the begin-
ning of each sentence based on sampling of previous delays.
Another scheme is to slow the playout in the absence of the
next packet and speed playout when an excess of waiting

packets exists. (The effect of this on intelligibility may
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not warrant its use.) One may mix these two to arrive at
still others or invent new ones. We shall consider only the
first scheme.

The first packet of a sentence will be delayed by an
amount called the destination wait time denoted as ©D. The
choice of ©D should be made large enough to reduce the fre-
quency of gaps to a tolerable Llevel but small enough to
retain the interactive nature of a conversation. In a later
section we shall consider several adaptive methods for

choosing D.

5.3.2 Blayback methods

Untess D is very large, there is a non-zero probability
that a gap will occur. The purpose of this section is to
describe two methods of dealing with this eventuality. The
first method (method E) would expand the playout time of a
sentence in order to include all packets in the output pro-
cess. The second method (method 1) preserves the timing at
the expense of ignoring some late arriving packets (or par-
tial packets). These two approaches lie at opposite ends of
a continuum of choices for dealing with gaps. At constant
delay (e.q., dedicated channel) the two extremes are
equivalent. Also if D is infinite the extremes coincide.
However, with finite 0 and variable delay the extremes
separate. The separation increases as delay variability
increases or as D decreases. At infinite delay variability

method E requires infinite time to output a sentence (of




more than one packet), while method I would output only the
first packet of a sentence and ignore any other packets.
Thus method E preserves the information at the expense of
the 1interpacket timing, and method 1 preserves the inter-
packet timing at the expense of discarding some information.
With finite delay variability and finite D one can envision
methods which lie between the two extremes. for example,
one may wish to discard only those packets which arrive both
Late and out of order (i.e.,r a packet is discarded if idits
successor is currently being output). Such a scheme has
properties of both methods € and 1. The time axis is ex-
panded when a packet is just late, yet some data may be dis-
carded in order to preserve 'reasonable" timing. Another
example 1is to Limit the expansion of time and/or the frac-
tion of discarded data to a certain amount and switch
methods if the threshold is exceeded.

An important consideration, which shall not te dis-
cussed here, is the filling of gaps (i.e., with silence or
something else). Several alternatives (which are beyond the
scope of this discussion) have been used and are discussed

in (Forqg 761.

5.3.2.1 Expanded time azis (Method E)

In this method content is regarded as the most impor-
tant part of the stream of packets. Therefore, it is
desired to deliver all packets which are produced by the

source of the stream traffic. Timing 1is considered
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important only to the extent that a packet is delivered in
the same sequence in which it was generated. A "late" pack-
et is one which arrives after it 1is desired for output
(i.e., after its predecessor has finished playout). 1In this
method a late packet causes all succeeding packets to be
delayed in playout, thus expanding the time axis or the
Llength (in time) of the sentence. An example of this is
illustrated in Figure 5.2(a).

This is the general approach taken by the network
speech compression research group at the University of
Southern California Information Sciences Institute (ISI).
In the ISI scheme extremely late out of order packets are

ignored.

5.3.3.2 Late data ignored (Method I)

In method I timing is considered to be of primary im-
portance. A packet (or partial packet) will be usec only
when it is not late. By discarding late information it s
always possible to retain the sentence length (in time).
Fiqure 5.2(b) shows the previous example sentence from Fia-
ure S5.2(a) passing through method I. Notice that sentence
time is preserved but that more gaps occur than in method F.
This s true in general as we shall see in later sections.
Method I is in use by experimenters at the Massachusetts

Institute of Technoloay Lincoln Laboratory.
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5.3.3 Performance eyvalyation

An examination of the performance of several adaptive
receiving techniques is presented in this section. We begin
by considering some assumptions which render the system
tractable for analysis. The analysis is then performed. An
attempt to characteriie communication quality is made.
Numerical results based on the analysis are presented in
detail for the exponential distribution, and in Llesser de-
tail for a «class of Erlangian distributions [Klei 751.
Simulation is used to show some results with the assumptions
relaxed.

Our mcdel of the system is pictured in Figure 5.3. A
period of activity, called a sentence, is initiated by the
sender at some time. (This corresponds to the detection of
no-silence in speech for example.) As time proaresses the
sentence is broken up into a sequence of segments called
packets or messages. A finite amount of time f(i) is re-
quired to fill packet i. Also associated with each packet i
is a network transit delay y(i). Let t(i) = f(i) + y(i) be
the source-to-destination delay of packet i. We make the

following assumptions regarding the random variable t(i):
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Assumptions of the model

1. Independence
We shall assume that each t(i) is chosen indepen-
dently from a probability distribution function
S(z) = Prlt(i)<z].
2. Stationarity
we shall further assume that S(z) is stationary
(i.e., S(2) is not a function of time).
¥hile the assumption of stationarity is used in order
to obtain analytic results, the algorithms (as we shall see)
adapt to nonstationary behavior.
followina the source-to-destination delay there 1is a
(possibly zero) destination buffering delay for each packet.
In particular, this buffering delay takes the value D for
the first packet of a sentence. As we see later, D is a
function of S(z) and the particular delay monitoring aloo-
rithm in use.
It is assumed that each packet requires f(i) to empty
(as well as to fill). 1If a packet arrives after its prede-
cessor has completed emptying, then a gap occurs in the out-
put stream (indicated in the figure bty crosshatching at the
output). Obviously there is a tradeoff between the value D
and the frequency with which gaps occur. We shall therefore
use these two parameters as our measures of performance.
Let us first consider the validity and implication of the

major assumptions of the model.
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5.3.3.1 pistribution of network delay

The purpose of this section is to present some observed
distributions of network delay, and provide guidelines for
producing tractable approximations of these distributions.
Both ARPANET measurement and simulation were used obtain
delay distribution examples. .

The approximation derived from the independence assump-
tion of Kleinrock [Klei 641 would suggest an Erlanaian
(i.e., the sum of exponentials) distribution of delay. This
assumption renders the model of each channel an M/M/1 queue
which yields an exponentially distributed system time. The
time through a series of queues therefore would follow an
Erlangian distribution.

exact formulas have teen derived for the distribution
of message delay 1in an isolated non-interfered path in a
network, for Poisson arrivals and deterministic service
time, by Rubin (see [Rubi 75]). Our problem is to find the
delay distribution of a stream traffic source in a general
network which does not seem to fit the assumptions of the
previous two models. Namely the stream packets must not be
allowed to change Length as they proceed through the net-
work, and our problem would be trivial in a non-interfered

path.

5.3.3.1.1 Measurement
The measurement experiments described in Chapter 4 pro-

vide the distributions presented here. In order to
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eliminate the start-up effect, the first 100 samples have
been discarded in each case., The resulting histograms are
plotted 1in Figure 5.4(a-d). In (a) and (b) there is a tri-
modal behavior exhibited. This shows the effect of the
periodic routing update procedure quite clearly (again).
The first mode corresponds to the round-trip delay experi-
enced by a message which always finds empty queues along its
path. The third mode, falling about 45 msec after the first
mode, corresponds to the delay of those messages and
corresponding end-to-end acknowledgements (RFNM) which must
wait for a total of 45 msec on queues while traversing the
network. This amount of time corresponds to the transmis-
sion time of two routing update packets, the processing of
four such packets (approximately two in the slower 316
nodes), or some combination of the above. The second mode.,
occurring roughly 10 msec beyond the first, is probably due
to the packet (or its RFNM) waiting behind the processing of
one routing update along ‘the way. Significance could prob-
ably be assigned to the other peaks as well but this would
belabor the point.

As we move to five hops (c) and then to ten hops (d) we
notice that the trimodal behavior ceases to appear and the
histograms take the shape of an Erlangian density. Perhaps
Kleinrock's independence assumption produces an acceptable

approximation for stream traffic as well!
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5.3.3.7.2 Simylation

The results of the measurement are biased by the large
overhead associated with the routing update procedure. We
therefore resort to simulation in order to remove this ef-
fect, to control the level of interfering traffic in the
network, and to study one way delay instead of round-trip
deltay. The simulation had the following characteristics:

Topology: A ring of 21 nodes and 21 full duplex chan-

nels

Channel capacity: 50000 bits/sec

Traffic pattern: A uniform traffic matrix of exponen-

tially distributed message lengths with a mean of
500 bits and Poisson arrivals as background traff-
ic. Inserted with this was one stream traffic
source sending to a destination ten hops away at a
rate of one SN0 bit packet every 250 msec.

The background traffic was set to three particular Llev-
els 1in order to produce .1, .5 and .9 channel utilization.
One-way network delay was measured for the stream traffic
and the resulting histograms appear in Figure 5.4(e~g). The
.1 Ltoad histogram (e) suggests a shifted exponential density
with perhaps an impulse at the shift value. For load .5 and
.9 (f and g respectively) the histograms have more of an

Erlanaian shape (with an impulse in the .5 case).
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Figure 5.4(a). Delay histogram (measurement, 1 hop).
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Figure 5.4(d). Delay histogram (measurement, 10 hops).
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Figure 5.4(e). Delay histogram (simulation, load= .1).
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Figure 5.4(f). Delay histogram (simulation, load= .5).
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Figure 5.4(g). Delay histogram (simulation, load= .9).
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5.3.3.1.3 Tractable approximations

In orcer to obtain some analytic results we must assume
that the delay distributicn may be characterized in a
mathematically tractable form. 1In this section we consider
some tractable approximations to the measured and simulated
delay distributions. We have already suggested two - (1)
the shifteo exponential and (2) the Erlangian class.

Ihe shifted exponential gis&ﬁihu;iqn

This distribution may be formulated as

0 t<b

S(t)

1}

-(t=-b)/w
e t>b

E | =

where b is the amount of sh:ft and b+w is the mean value.
Figure 5.5 shows the histogram of the simulation in Figure
S.4(e) plotted together with a shifted exponential with the
same mean value and with b equal to the minimum observed
value. This appears to be a fairly close fit.
Ihe Eclang family of distributions
The shifted exponential was a close fit to one of the
sample distributions. We now consider the Erlang family
which may be formulated as
r-1
ryrt -rt/x
-{— e
X \x
ds(t) = dt
(r=1)!
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Figure 5.5. Shifted exponential fit to delay histogram (simulation, load = .1).
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The formula has been written so that mean value is indepen-
dent of r. As Kleinrock [Klei 75) points out on page 124,
the standard deviation of this distribution 1is x/sart(r).
(Figure 5.26 shows this density function for several values
of r.)

By selecting r one may change the coefficient of varia-
tion (defined to be the standard deviation divided by the
mean) between zero and one. All the observed distributions
have coefficients of variation in this range. Figure 5.6
shows those observed histograms (which appear to be Erlangi-
an) plotted together with the member of the Frlang family of
the appropriate r and mean value. This appears to be a

close fit, particularly for the simulation.
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Figure 5.6(a). Erfang fit to delay histogram (measurement, 5 hops).
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Figure 5.6(b). Erlang fit to delay histogram (measurement, 10 hops).
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Figure 5.6(c). Erlang fit to delay histogram (simulation, load = .5).

142

1000




TR T w——

R T T

(%)

0 300 600 900 1200
Delay (msec)

Figure 5.6(d). Erlang fit to delay histogram (simulation, toad = .9).
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The shifted Erlangian distributions

So far we have seen that neither the shifted exponen-
tial nor the Erlang family is by itself sufficiently rich as
1 to model all of the observed behavior. Since each class did
well in a set of instances, it seems natural to consider the
closure of the two <classes. The resulting class - the
shifted Erlangian - is considered here. The density func-

tion for this class may be written as

0 t<b
E | ds(t) =
* r-1
r r(t-b)) -r(t-b)/w
= | s====a e
3 . w ( W
3 dt  t>b

(r=1)1

where, as before, b is the amount of the shift and w = x -
b.
Figure 5.7 shows the fit of the histogram of the ap-

propriate shifted Erlangian distributions together with the

observed histograms. Notice the close fit for all but the
measured distributions for one and two hops. The two which
are not well approximated with the shifted Erlano class
could it appears be approximated by a waited sum of shifted

exponentials, but we shall not attempt this here.
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Figure 5.7(b). Shifted Erlang fit to delay histogram (measurement, 2 hops).
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Figure 5.7(c). Shifted Erlang fit to delay hisogram (measurement, 5 hops).
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Figure 5.7(d). Shifted Erlang fit to delay histogram (measurement, 10 hops).
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Figure 5.7(e). Shifted Erlang fit to delay histogram (simulation, load = .1).
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Figure 5.7(f). Shifted Erlang fit to delay histogram (simulation, load = .5).
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5.3.3.2 §tatistical independence of network delay

In the study of stochastic processes, statistical in-~
dependence is often assumed to make analysis simpler (even
possible). We make use of such an assumption here. 1In this
section an heuristic arqument is presented to justify this
assumption. This argument is then partially substantiated
by measurement and simulation.

Wwe assume that one of the characteristics of a stream
source 1is that packets are emitted at relatively Large in-
tervals compared to the interval during which a packet occu-
pies a single <channel 1in the network. More precisely we
have the property that the average interarrival time of
packets from the stream source t >> s the average time spent
waiting for and using a channel. This is both an assumption
of (a) moderately lLow throughput for the stream source, and
(b) Llow overall traffic. If (3a) were not true, then the
source becomes <classifiec as a high throughput source. 1If
(b) were not the case then the network delays may exceed
those desired for interactive stream communication.

With this assumption we see that each packet enters the
network and is likely to be far along its way to the desti-
nation before its successér.enters the network. Therefore
each packet arrives to find the network in a state which is
"independent” of the influence of his predecessors which are
no Longer in sight. E€Each packet then receives an indepen-
dent "look", if you will, at the network. We conclude that

the delay experienced by successive packets should be
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approximately independent.

Let us examine the measurement and simulation results.
A necessary, byt pot sufficient, condition for statistical
independence 1is that of Linear independence. Linear depen-
dence may be tested simply by computing the <correlation
coefficient L([Fell 571 (p. 221) of a sequence of delays with
itself shifted by an amount j. By changing the shift j we
obtain a sequence of correlation coefficients. This is
related to the "autocorrelation” sequence defined in
[Oppe 75] (p. 384). Our sequence however is normalized by
first subtracting the mean from each value (which gives the
autocovariance" sequence) and dividing the result by the
variance of the original sequence. The result of this com-
putation for j = 1, 2, ..., 200 is shown in Figure 5.&(a-d)
for the measured sequences of delay and in Figure S5.8(e-g)
for the delay sequences produced by the simulation described
in the previous section. The figures show that a near zero
linear dependence exists for the measured delay of 5 hops or
more and for a load of .1 in the simulation. For a2 load of
.5 successive delays are less than 30 percent correlated but
beyond j=1 there is little correlation. As expected delay
at a load of .9 1is highly correlated for the first few
values of j. Parts (a) and (b) of Figure 5.8 show a regular
pattern of correlation. This 1is further evidence of the
periodic nature of the interference of the routing update

procedure.
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Figure 5.8(b). Delay correlation (measurement, 2 hops).
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Figure 5.8(c). Delay correlation (messurement, 5 hops).
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For comparison to Figure 5.8 we 1include Ffigure 5.9
which shows the correlation coefficient computed in the same
way for a sequence of pseudo-random numbers. Its appearance
is much Like Figure 5.8(c-f).

With the argument partially supported by measurement
and simulation, we conclude that the assumption of statisti-
cal independence is not completely unreasonable. We shall
proceed with this assumption as at least the first approxi-

mation to the behavior of the actual system.

5.3.3.3 Gap probability

Having stated and considered some of the implications
of the assumptions of the model, we are now prepared to
begin the analysis of that model. We begin by finding ex-
pressions for the probability of gap occurrence as a func-
tion of the delay distribution and R(D) the distribution
which characterizes the choice of the destination wait value

D. Let us begin with method E.

5.3.3.3.1 Gap probability for playback method E

Under the assumption that fill and network delays are
each independent, we may find the probability with which
gaps occur in the output process. Let y(i) be the network
delay and f(i) be the fill time of message i. Let t(i) =
y(Gi) + f(i) = y(i-1) - f(i-1) be the difference in delay
experienced by message i and i-1. Then the (t(i)} are mutu-

ally independent and jdentically distributed random




'f
E

variables since we have assumed that the {y(i)) and {f(i))}
are. Let the nth partial sum of {t(i)) be P(n) = P(n-1) +

0. Notice that P(n) = y(n) + f(n) -

t(n), and Let P(0)
Ly(D) +f(0)]. Now let us define the strict ascending ladder

indices {N(k)} for {P(n)} as in [Prab 651 (p. 140) as fol~

lows:
N(D) =0
N(1) = min(n : P(N)>0)
NCk) = mind{n : n>N(k~1) and P(n)>P(N(k-1)))

To proceed, we need the following theorem.

Iheorem. A gap in the output process in method £ oc-
curs at message i if and only if i is a ladder index N{k)
for some k>0 and P(i)>D, where D is the destination wait
time.

Proof: An output gap occurs if and only if a message
arrives after it is needed for playout. If message zero
begins filling at time zero, then the time at which message
i arrives at the destination is

fC0) + (1) + ... + £(i) + y(d)

(i.e., the time to fill all previous messages plus the time
to fill message i plus the network delay of messagce i).
Suppose that P(i) < D for all i. Then for each i we

have

PCi) = y(i) + f(i) - (y(D) +f(0)) < D0 for all i. (5.2)

The time that message one is required for playout is

fC0) + y(0) + 0 + fC0)




(i.e.» the time of arrival of message zero plus the destina-
tion wait time plus the time to playout message zero). Ffronm
equation 5.2 we have

y(1) + £C1) + £€0) < y(0) + £C0) + D + £(O).
Therefore message one is not late and does not cause 2 gap.
Equation 5.2 may be rewritten as

f(i) + y(i) < y(0) + fC0) + ».

By adding f(0) + f(1) + ... + f(i-1) to both sides we have

i-1 i-1
Y fGY + fCD) + y(i) € 2 (i) + y(0) + f(O) + D.
i=0 i=0

This states that message i arrives at or before its required
time. Hence no gaps will occur when P(i) < D for all i.
Supposer, on the other hand, that there exists an i such
that P(3) > D. Choose k1 to be the minimum such i. Then k1
is a ladder index by definition, since it is the first oc-
currence of a value of P(i) greater than D. We have

f(0) + y(0) + D < f(k1) + y(k1)

and therefore

k1-1 k1-1
fC0) + y(0) + 0 + Y f(i) < X f(j) + f(k1) + y(kD)
i=0 j=0

and hence the first gap occurs at ladder index k1 whose
value P(k1) is first to exceed O.

After the occurrence of this gap at k1, message k1?1 is
output immediately upon arrival and therefore message k1+1

will be needed at time
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k1
20 + ylk1) + (k1)
3=0

The next gap., if any, will occur at message kZ where k2 is
the minimum i for which
3 k1 i-1

AGY + yCid > 3 FG) + y(k1) + Y, f(i)

j=0 j=0 j=k1
(i.e.,» message i arrives after it is needed for playout).
The following three statements are each equivatent to the
Last.

f(i) + y(i) > f(k1) + y(k1)

f(i) + y(i) = f(2) =~ y(0) > f(k1) + y(k1) - y(0) - fC0)

FGi) > PCk1)

Therefore, since k2 was chosen as the minimum such i, k2 is
the ladder index immediately following k1.

We may now prove the general case by induction. Assume
that the first n-~1 gaps occurred at the first n-1 ladder
indices whose values are greater than D. Let L be the Llast
ladder 1index at which a gap occurred. After the occurrence
of this gap at L, message L is output immediately upon ar-
rival (as was message k1) and thérefore message L+1 will te

needed at time

L
G + y(L) + fCL)
i=0

The next cap, if any, will occur at message (1 where 1 is

the minimum i for which
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1Zf(j) + y(i) >if(j) + y(L) + igf'.j)

=0 i=0 j=L
(i.e., message i arrives after it is needed for playout).
Once again, the following three statements are each
equivalent to the last.

f(i) + y(i) > f(L) + y(Ul)

f(i) + y(i) - fC0) - y(0) > f(l) + y(l) - y(0) - f(0)

PGI) > P(L)
Hence L1 1is the Lladder 1index immediately following L.
Therefore each Ladder index whose corresponding value is
greater than D has an associated gap; and a gap occurs only
at a ladder index whose corresponding value is greater than
D.

€.E.D.

Thus the probability that the kth message in a sentence
produces a gap is equal to the probability that k is a
Ladder index and P(k) > D, j.e..,

PrCgap | k,D] = Prfk is a lLadder index and P(k)>DJ]
According to [Prab 651 (p. 141) we have

PrLgap | k,D] = PrLP(k)>0, P(k=1)>0,..., P(1)>0, and
P(k)>D]
Since P(k)>D implies PC(k)>0 and P(1) is gquaranteed to be
greater than zero, we have
Prlgap | k-,D] = PrLP(k)>Ds P(k=1)>0sc..» P(2)>0]
Assume that the (fill plus network) delay is distributed

with probability distribution function SC(y), that the delay
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of the first message in the sentence is t, and that D is the
destination wait time. Then
k-2
Prlgap | kest,D) = [1-SCt+D)IC1-S(t)]
“e may reméve the condition on k to obtain the probability
that a gap occurs at a randomly selected message in a sen-
tence of lLength n, given t and D, i.e..,

1 k=2

n
Prfgap | t,D,nl = = 3 [1=-SCt+D)IC1-S(t)]
k=2

n
Removing the condition on t we have

PrCgap | Ds,nl =

D 1 =

n-2 0 k
3. f C1-5Ct+0)IL1-5(t)2 ds(t)
k=0 Jt=0

Removing the condition on D we have

1 n=2 00 Ie) k
Prlocap /nl = - Z f f C1-SCt+D)IL1-S(t)]) IS(t)AR(D)
D=0 Jt=0

n k=0
(5.3)

where R(D) is the distribution function of the destination
wait time D. Since

n

i=0 1-x
we have
n=1
1 o0 o0 1-01=-S{t)]
Prlgap /n] = -f / [1-S(t+D)] e dS(t)drR(D)
nJp=N Jt=0 S(t)
(5.4)
167




We shall evaluate this expression numerically in succeeding

sections.

5.3.3.3.2 Gap probability for playback method 1
Since there is no expansion of the time axis in method
I, we expect that when a message exceeds the delay of the
first message by more than D a gap results. The destination

arrival time of message k is (as before) aiven by

k
2 G + yk)
j=0

The time at which message k is required is
k-1

fC0) + y(0) + D + 3 f(i)
s =Y

Hence we have a gap whenever

k k=1
2 fG) 4+ y(k) > £€0) + y(0) + 0 + Y, f(j)
i=0 j=0

or
f(k) + y(k) > fC0) + y(0) + O.

Therefore the probability of a gap at message k., given that

f(0) + y(0) =t and D is the destination wait time, is 1-

S(t+b). For sentences of Length n messages we have

1 n=1 n=1
Prigep | t,D,n] = = 3 [1-S(t+D)] = —— [1-S(t+D)]
n k=1 n

Removing the condition on t we have




n"1 00
Prlgap | 0,0l = --- J,. C1-5(t+D)] ds(t)
n t=0

Kemoving the condition on D we have

n-1 o0 o0
prigap | nl = ---f f [1-S(t+D)] dS(t)dR(D) (5.5)
n D=0 Jt=0

Comparing the right hand side of this to that of equation
5.3 we notice, as expected, that this expression is larger.
Therefore, in general, the gap probability 1is Llower 1in

method € than in method I. Numerical results appear below.

5.3.3.4 Delay predictors

In the previous two sections we have assumed a distri-
bution for the destination wait time D. The purpose of this
section 1is to explore some possible delay predictors each
yielding a distribution function for D. Three schemes are
discussed and all are based on monitoring which may be per-
formed at the destination node. The first scheme predicts
delay variation by computing the range of delay for previous
samples. We have found that this scheme "learns" quickly
but performs poorly when occasional Long delays occur. In
order to ignore these "spikes" in delay, and thus achieve
smaller D, we introduce the second scheme which views only
that portion of the range below a threshold. The third
scheme attempts to track the changing delay by modifying an
internal counter to predict message arrival times.

The basic idea then, in each scheme, is to measure the




delay, and based on the information gained, to make some
intelligent choice for D at each sentence boundary. It is
clear that the lLarger is D the fewer are the gaps which will
occur 1in the output stream. However, large D tends to des-
troy the interactive nature of the communication. Ideally a
scheme would "optimally" balance these two properties. It
is difficult to define optimality here. However, the fol-
lowing general statement holds: Large destination wait time
and/or frequent gap occurrence each yield a poor quality of

communication.

5.3.3.4.1 m-sample range

In both playback methods, if the delay of a message
within a sentence exceeds the delay of the first message of
that sentence by more than D, then at least one gap will
occur. The total range of the previous m (m>1) samples is a
pessimistic estimate for the difference between maximum
delay within a2 sentence and the delay of the first message
in that sentence. It is pessimistic because, on the aver-
age, the first delay will fall somewhere between the ex-
tremes. The problem is to find the distribution of the
range of m samples. Our derivation below follows that of
LGumb 671 (pp. 97-98). We begin with the joint probability
that t is the minimum (denoted t=min) and t+z is the maximum

(denoted t+z=max) among m samples each drawn incependent ly

from distribution S(y).
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Prit=min, t+z=max | m samptles]

]
"

PrLat least one sample t,

at least one sample = t+z, and

m-2 samples fall in the interval [t,t+2z] 1]

m=-2
m dS(t) (m=1) dS(t+z2) ([S(t+z)-S(t)12

By removing the conditions on t and t+z we find that the
distribution of range R(D | m) = Prlrange<D | m samples] is

given by

o0 D m=-2
RCD | m) =j m(m=-1)LS(t+z)-S(t)1] dS(t+z) dS(t)
t=0 Jz=0

Yielding

0 m=1
RCD | m) = ﬁj{ [SCt+Dp)-S(t) 1] ds(t) (5.6)
t=0

This equation cannot be reduced further without knowledge of

s(t).

5.3.2.4.2 m-sample partial range

The full range estimate functions fairly well (as we
show later) but it is not without fault. Since the entire
range 1is used, isolated cases of high delay cause an unduly
Large value to be chosen for the next destination wait time.
For this reason we wish to examine the partial range of m
samples where the k highest values are idignored (m>% and

k<m=1). We wish to find, as before, the distribution R(D |




m,k) of the partial range given the distribution S(y) from
which the m samples are chosen.

we begin, as before, with the joint probability that ¢t
and t+z are amona the m samples drawn from S(y), where t is
the minimum, and t+z is the maximum among the m-k smallest
samples.

Prfdrawing such a sample]

= Prlat least one sample t,

at least one sample t+z,
m-k-2 samples are in (t,t+z1, and tkere are

k samples which exceed t+z 1

m-k=-2 /m-2
= mdS(t) (m=-12dS(t+z)[S(t+2)-S(t)) ( )[1-S(t+z)3
k
Therefore
m=-2
R(D | mok) = m(m-1)( )
k

0 D m-k=2 k
f f C(s(t+z)-S(t)] [1-5(t+2)] dS(t+z)dS(¢t)
t=0 7z=0
(5.7)

5.3.3.4.3 A delay tracker

A third method of delay prediction was developed by
James Forgie U[Forg 76al] of the Massachusetts Institute of
Technology Lincoln Laboratory., Lexington, Massachusetts. It
compares the time stamp of an arriving messace with the

"arrival clock"” and adjusts that clock by plus (or minus)

8 il ccC e s bading,
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one count 1if the message arrived earlier (or later) than
predicted by the clock value. At the beginning of a sen-
tence 2 quantity called the "reconstitution delay" ¢ is sub-
tracted from the arrival clock to set the playout clock. It
is 1important to note that the value of ¢ is chosen at the
beginning of a conversation by the user. The waiting packet
begins playout when the playout clock reaches the value of
the time stamp within the packet. Time is measured in units
equal to a frame size (19.2 msec for Linear Predictive Cod-
ing, LPC, algorithm used experimentally for speech communi-
cation 1in the ARPANET, see [Cohe 761) and the clock is in-
creased by one at each frame time.

Figure 5.10 illustrates the operation of the algorithm.
The first message of the sample, over which the arrival
clock a(x) is adjusted, arrives at the destination and ini-
tiates the clock value (assumed to be at time zero). The
time stamp in each message is shown as the ordinate of a dot
at the point (x,y), where x is the arrival time of the mes-
sage at the destination and y is the time stamp within that
message. Notice that an "early" arrival has its time stamp
above the arrival clock and a "late" arrival appears telow.
The arrival clock therefore attempts to "track”™ the points
(x,y) by adding one at points where y > a(x) and subtracting
one where y < a(x). Were the clock wunadjusted, the value
would be floor(x) (the Largest integer less than or equal to
x). Let the clock difference L(x) be defined to be a(x) -

floor(x). Then a(x) predicts the time stamp of a message
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